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We show that an arbitrary body or aggregate can be made perfectly absorbing at discrete frequencies if a

precise amount of dissipation is added under specific conditions of coherent monochromatic illumination.

This effect arises from the interaction of optical absorption and wave interference and corresponds to

moving a zero of the elastic S matrix onto the real wave vector axis. It is thus the time-reversed process of

lasing at threshold. The effect is demonstrated in a simple Si slab geometry illuminated in the 500–900 nm

range. Coherent perfect absorbers act as linear, absorptive interferometers, which may be useful as

detectors, transducers, and switches.
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A laser is a physical system which, when subjected to an
energy flux (pump), self-organizes at a threshold value of
the pump to produce narrow-band coherent electromag-
netic radiation. In the absence of inhomogeneous broad-
ening and quantum fluctuations, this radiation has zero
linewidth. Above the first lasing threshold, lasers are non-
linear systems, but at the first threshold they satisfy a linear
wave equation with a negative (amplifying) imaginary part
of the refractive index, generated by the population inver-
sion due to the pump [1]. In conventional lasers, the gain
medium is confined in resonators with a relatively high
quality factor (Q), and the lasing modes are closely related
to passive-cavity modes. However, recent demonstrations
of random lasers [2,3] have shown that the lasing threshold
can be reached and coherent lasing obtained in resonators
with no high-Q passive-cavity modes. It can be rigorously
shown within semiclassical laser theory that the first lasing
mode in any cavity is an eigenvector of the electromagnetic
scattering matrix (S matrix) with an infinite eigenvalue;
i.e., lasing occurs when a pole of the S matrix is pulled
‘‘up’’ to the real axis by including gain as a negative
imaginary part of the refractive index [4]. This viewpoint
suggests the possibility of the time-reversed process of
lasing at threshold [5,6]. A specific degree of dissipation
(‘‘loss medium’’) is added to the resonator, corresponding
to a positive imaginary refractive index equal in absolute
value to that at the lasing threshold. The system is illumi-
nated coherently and monochromatically by the time re-
verse of the output of a lasing mode, and the incident
radiation is perfectly absorbed. We refer to such an optical
system as a coherent perfect absorber (CPA).

Coherent perfect absorption is a general and robust
phenomenon related to the analytic properties of the S
matrix. For simplicity, we consider scattering in one or
two dimensions, for which the electric field (in the TM
polarization) is a scalar obeying the Helmholtz equation:

½r2 þ n2ð ~rÞk2��ð~rÞ ¼ 0: (1)

Here k ¼ !=c (a scalar),! is the frequency, and n ¼ n0 þ

in00 is the complex refractive index, with n00 < 0 for gain
and n00 > 0 for absorption. An ‘‘external region,’’ encom-
passing the resonator, extends from some radius rs to
infinity. Here n ¼ n0, a constant (n0 ¼ 1 for free space),
and the field is a combination of incoming waves c in

m and
outgoing waves c out

m :

�ð ~rÞ ¼ X
m

½�mc
in
mð ~rÞ þ �mc

out
m ð ~rÞ�; r > rs: (2)

The S matrix,
P

m0Smm0 ðkÞ�m0 ¼ �m, relates the scattering
amplitudes. For lossless media, n00 ¼ 0 and SðkÞ is unitary
for real k. Continuing k into the complex plane, SðkÞ has a
countably infinite set of poles and zeros, symmetrically
placed at fk�m ¼ qm � i�mg with �m > 0.
When we add gain or dissipation, the zeros and poles of

SðkÞ flow in the complex k plane, but they cannot simply
appear or disappear because arg½detðSÞ� always winds by
2� around each zero and �2� around each pole. We
parameterize the dissipation by the positive value of the
imaginary part of the refractive index, Imfng ¼ n00 > 0.
Whereas in the threshold lasing problem adding gain (n00 <
0) moves the poles up towards the real axis, adding dis-
sipation generates an exactly symmetric downward motion
of the zeros. For some value n00m, the mth zero crosses the

real axis at some real ~km, leading to a perfect absorption
resonance at that frequency. We refer to the discrete pairs

fð~km; n00mÞg as the CPA zeros; they are in one to one corre-

spondence with the lasing thresholds fð~km;�n00mÞg.
Radiation incident at each ~km will be completely absorbed
if it corresponds to the specific eigenvector of the S matrix
having eigenvalue zero, which is simply the time reverse of
the corresponding lasing mode. For homogeneous bodies,
such purely incoming, real-k radiation modes are the com-
plex conjugate of the constant-flux states first proposed by
Kapur and Peierls [7] and recently introduced to laser
theory by Türeci, Stone, and Collier [8]. We wish to
emphasize that the CPA zeros are distinct from absorption
resonances of the atomic or molecular medium, which do
not rely on the incoming radiation occurring within spe-
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cific modes. The CPA process arises from the interplay of
interference and absorption: In the presence of specific
amounts of dissipation, there exist interference patterns
that trap the incident radiation for an infinite time. If the
resonator of the CPA has high Q, then even small rates of
single-pass absorption can lead to perfect absorption.
Hence, media that normally do not absorb radiation well
at certain frequencies can be made to do so, as we dem-
onstrate below for Si (silicon). Finally, we show that ab-
sorption can also be reduced by illuminating the CPAwith
eigenvectors of the S matrix with constructive interference
for escape.

Before moving to specific examples, we discuss a gen-
eral framework for finding CPA zeros based on the
‘‘R-matrix’’ theory of Wigner and Eisenbud [9]. In this
approach, the S matrix is given by

SðkÞ ¼ �e2in0kr0½I � in0kRðkÞ��1½I þ in0kRðkÞ�; (3)

where r0 > rs is an arbitrarily chosen boundary far from
the origin, and RðkÞ (the R matrix) takes the form

Rmm0 ðkÞ ¼ X1
��0¼1

�m
�F

�1
��0�m0

�0 ; (4)

F��0 ¼ ðk2� � k2Þ���0 � ik2���0 ; (5)

where each �m
� 2 R is a Wigner-Eisenbud basis function

evaluated at r ¼ r0 and decomposed into the mth channel
[10], and k� 2 R is the corresponding eigenvalue. The
dissipation matrix ���0 ¼ R

ddrImðn2Þð~rÞ��ð ~rÞ��0 ð ~rÞ is
real and positive-definite.

When Q � 1, each S-matrix zero or pole is determined
by approximating the R matrix by a single term �; in this
case the zeros and poles of the S matrix occur at

ð1þ i���Þk2 � i’�n0k� k2� ¼ 0; (6)

where ’� ¼ P
mð�m

� Þ2 > 0. Without dissipation (��� ¼
0), this implies that all zeros have positive imaginary parts,
as already noted. Furthermore, zeros cross the real axis
exactly when ��� ¼ ’�=k�, at frequency k ¼ k�. In
Fig. 1, we show the exact pole motion, for the case of the
two-channel CPA (see inset and discussion below), finding
excellent agreement with the single-pole R-matrix predic-
tion, even though the cavity only has Q� 30.

The simplest possible CPA is a single port reflector, in
which a single channel fiber or waveguide is terminated by
a cavity tuned to the correct value of n00. This device is
similar, although not identical, to the ‘‘critically coupled
fiber-resonator’’ systems widely studied in integrated op-
tics [11,12]. In a CPA, the loss induced in the resonator is
completely due to absorption in the loss medium and not
due to outcoupling (e.g., bending) loss. This makes the
one-port CPA is potentially useful as an on-chip photovol-
taic or calorimetric detector or transducer. However, the
optical control properties of the CPA are revealed only
when there is more than a single input channel of the
incident field. We therefore study a simple two-channel

case to illustrate the concept fully. Consider a single-mode
fiber or waveguide with index n0 containing a resonator
consisting simply of a segment of thickness a and uniform
refractive index n (see inset in Fig. 1); in this case, there are
two input channels for each propagating k, corresponding
to incident radiation from the left and right. An almost
equivalent system would be a slab of thickness a illumi-
nated on both sides by a narrow beam at normal incidence,
in which case n0 ¼ 1. In both cases, it is straightforward to
calculate the 2� 2 S matrix for arbitrary complex index n
and find its two eigenvalues s1;2. The total scattering in-

tensity for each eigenmode is js1;2j2, and a zero eigenvalue
of S occurs when

einka ¼ �n� n0
nþ n0

: (7)

When ka � 1, we can find an infinite number of discrete
solutions of this equation, n� ¼ n0� þ in00�, as

n0� � ��

n0ka
; � ¼ 1; 2; 3; . . . ; (8)

n00� � 1

n0ka
ln

�
n0� þ n0
n0� � n0

�
: (9)

In Fig. 2, we take n0 ¼ 1 and plot the solutions for ka ¼
664:7. Note that we have here restated the CPA problem so
as to find the fn�ðkÞgwhich produces a zero of the Smatrix
for a fixed k. This can be achieved by letting both the real
and imaginary parts of n� vary; earlier, we varied the
imaginary part n00 at fixed n0, leading to zeros at different
k points. This is a useful reformulation because it suggests
one practical means to realize a CPA. If the frequency-
dependent nðkÞ of the loss medium can be tuned appropri-
ately by scanning k, one may achieve the CPA resonance
condition, i.e., nðkÞ � n�ðkÞ for some integers �.

FIG. 1 (color online). Motion of exact S-matrix zeros (blue
crosses) and poles (blue triangles) in the complex-k plane, as
dissipation increases from zero, for a two-channel resonator of
length a and uniform index n. In the external region, n0 ¼ 1. For
n � 3þ 0:05i, the fourth zero from the left touches the real axis,
yielding a CPA zero. Also shown are the zeros (red circles) and
poles (red squares) predicted from Eq. (6). Inset: Schematic of
system; each input is a single-mode fiber.
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In an indirect band gap semiconductor such as Si or GaP,
n00 increases smoothly from very small values as k in-
creases past the band gap, while n0 changes little [13].
For frequencies near the band gap, @n00=@k � @n00�=@k
and @n0=@k 	 @n0�=@k, and thus it is possible to vary k
so as to pass very close to several CPA zeros. Like a bound
state, a CPA zero has no intrinsic width; the scattered
intensity near a CPA zero is Imin � c0jnðkÞ � n�ðkÞj2,
where c0 is of order unity. Figure 3 shows the S-matrix
eigenvalue intensities for a slab of undoped Si, with a ¼
100 �m. More than ten substantial CPAminima are visible
between 938 and 954 nm, with jnðkÞ � n�ðkÞj2 & 10�5 and
an intensity contrast of up to �50 dB.

A crucial point is that the system exhibits perfect ab-
sorption only if it is coherently illuminated with the zero
eigenmode of the S matrix for the resonant k value.
Because of the mirror symmetry of this uniform index
CPA, the two eigenmodes are parity eigenstates, meaning
that the left and right beams must have phase difference 0
or �. The � in Eq. (7) determines whether the perfect-
absorber condition is satisfied by the symmetric or anti-
symmetric mode. The location of these minima is
a-dependent and hence tunable within a given material;
we can derive a tight lower bound for the S-matrix eigen-
value intensities:

jsðaÞj2 

�

2ðn02 � n0Þ sinhðn00kaÞ � 4n0n0
ðn0 þ n0Þ2en00ka þ ðn0 � n0Þ2e�n00ka

�
2
; (10)

which goes to zero at the n values given in (7) and locates
the interesting operating regions. For the uniform Si CPA,
the optimal wavelength occurs at around 750 nm for a ¼
10 �m and around 1000 nm for a ¼ 150 �m; the exact
value depends on nðkÞ, which in turn depends on the dop-
ing. If a * 20 �m, the spacing between CPA zeros, given
in (8), becomes small, and the material index always passes
close to one or more of them without fine-tuning a, making
the behavior shown in Fig. 3 robust. Other indirect band
gap semiconductors such as GaP show similarly good
results.
The perfect absorption of a CPA arises from a combi-

nation of interference and dissipation: The reflected part of
the first incident beam interferes destructively with the
transmitted part of the second incident beam, and vice
versa, and therefore the radiation is trapped in an interfer-
ence pattern within the slab and lost entirely to dissipation.
One sees from Fig. 3 that the other, orthogonal eigenmode
has maximal scattering (jsj2). In fact, the energy absorbed
in this mode is significantly less than if the system is
incoherently illuminated from both sides; the reflected
part of each beam interferes constructively with the trans-
mitted part of the other beam, causing the radiation to
escape the slab more quickly. Thus, a CPA allows resonant
control of absorption, either an increase to nearly 100% or
a reduction to <1% for some resonators (see Fig. 4).
To illustrate the role of interference, we write down the

transfer matrix, a 2� 2 matrix with unit determinant:

Tðn; kÞ ¼ 1

t

t2 � r2 r
�r 1

� �
; (11)

where rðn; kÞ and tðn; kÞ are the reflection and transmission
amplitudes, respectively, for a single wave of unit ampli-
tude incident from either direction. Perfect absorption
occurs when T11 ¼ 0, i.e., when r2 ¼ t2. For the output
beams to interfere destructively in the manner described
above, not only must they have equal intensities (jrj2 ¼
jtj2), they must also have the correct relative phase. This
should be impossible to satisfy when n is real due to energy
conservation, and the T-matrix analysis confirms this as
follows. When n is real, T� ¼ T�1, and consequently (11)

FIG. 2 (color online). Complex refractive indices leading to
perfect absorption for the device of Fig. 1, for ka ¼ 664:7. Only
parity-even solutions are shown (blue circles). The green curve
shows the refractive index of Si, nðkÞ. Inset: Parity-even solu-
tions (hollow blue circles) and parity-odd solutions (filled red
circles) in the region 3:55< ReðnÞ< 3:62; the green cross shows
the index of Si at ka ¼ 664:7, a ¼ 100 �m (i.e., 	 ¼
945:3 nm).

FIG. 3 (color online). Semilog plot of normalized output in-
tensities jsj2 vs the wavelength 	 ¼ 2�=k, for a 100 �m Si slab.
Solid lines show log10ðjsj2Þ for a parity-even (blue) or parity-odd
(red) eigenmode. The dashed line shows 2ðjrj2 þ jtj2Þ, the total
output intensity when the two input beams are incoherent. Inset:
Upper and lower bounds for jsj2 over a wide range of 	. The gray
area shows the actual bounds, and the solid black line show the
approximate lower bound from Eq. (10).
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implies that, even if we achieve the condition jrj2 ¼ jtj2,
there is always a ��=2 phase difference between r and t
and not the required 0, �. This analysis is easily general-
ized to systems lacking mirror symmetry.

A very important property of the CPA which follows
from this analysis is that we can change the output intensity
simply by changing the relative phase of the input beams.
For the parity symmetric two-channel CPA just discussed,
a phase-modulated input [1, �ei�], with equal amplitude
in each channel, leads to equal scattering intensities in each
channel of the form

I ¼ I0sin
2

�
�

2

�
: (12)

Here I0 ¼ jðn2 � n20Þ=ðn2 þ n20Þj2, where n is the special

refractive index satisfying (7). In general, any CPA can
function as a compact absorbing multichannel interferome-
ter. Unlike an ordinary interferometer, a CPA does not shift
the input beams between possible output channels but
causes them to be absorbed within the material.

The absorbed photon energy may flow out of the cavity
in a number of different forms. In direct band gap materi-
als, a large fraction will be reemitted via fluorescence,
which is not generally desirable, whereas in indirect band
gap materials such as Si, it can be extracted in the form of
heat and/or photocurrent, either of which could be useful.
Therefore, materials which are not useful as lasing media,
such as Si, make good CPAs, whereas good lasing materi-
als, such as GaAs, make poor CPAs.

In applications it will often be useful to have a large
contrast between the amount of scattered radiation which
occurs at the CPA resonance condition versus incoherent or
incorrectly phase-matched illumination. For the uniform
CPA resonator described by (12), the intensity contrast is
controlled by n, and for the Si CPA of Fig. 3, the maximal

contrast is �0:75. It is possible to increase the contrast
substantially with a nonuniform system; e.g., a distributed
feedback Si=SiO2 CPA of the type shown in Fig. 4 exhibits
js1j2 � 5� 10�4 for the absorbing eigenmode and js1j2 �
0:99 for the other eigenmode. The absorption in the second
mode is exceptionally low because the field inside the slab
is concentrated in the SiO2 regions, which are
nonabsorbing.
CPAs are potentially useful as transducers, modulators,

or optical switches, for example, in on-chip integrated
optical circuits based on Si waveguide or resonator tech-
nology [14]. We have verified that with realistic nonopti-
mized parameters a Si single-mode waveguide with
0:9 �m distributed-Bragg-reflector mirrors and a 4 �m
‘‘loss region’’ of pure intrinsic Si exhibits a CPA absorp-
tion resonance at 947 nm with contrast of roughly 90%.
Operation likely can be extended into the communications
wavelengths around 1:5 �m by designing devices with
index tuning via free carrier injection as has already been
achieved in other Si-based resonant photonic circuits [14].
However, solar photovoltaic or stealth applications appear
unlikely, as CPAs are narrow-band devices and the oscil-
latory frequency dependence of their absorption tends to
average out the response to a broadband signal.
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[8] H. E. Türeci, A.D. Stone, and B. Collier, Phys. Rev. A 74,

043822 (2006).
[9] E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).
[10] We choose the basis set corresponding to the dissipation-

less system, i.e., n ¼ n0, so that the imaginary part of the R
matrix is expressed explicitly in terms of Imfn2g.

[11] M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85,
74 (2000).

[12] J. R. Tischler, M. S. Bradley, and V. Bulović, Opt. Lett. 31,
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FIG. 4 (color online). Plot of output intensities jsj2, as a
function of wavelength, for a distributed feedback CPA consist-
ing of 20 Si slabs of width 188.5 nm, separated by SiO2 slabs of
width 266 nm. The refractive index of SiO2 (n ¼ 1:46) is real to
a good approximation in this wavelength range, so absorption
occurs only in the Si. A large (�99%) absorption contrast can be
observed at 956 nm near the photonic band gap. Inset: The
intensity of the two eigenmodes, as a function of x, close to the
edge of the system, at 956 nm.
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