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We report the first experimental observation of three-dimensional light bullets, excited by femtosecond

pulses in a system featuring quasi-instantaneous cubic nonlinearity and a periodic, transversally modu-

lated refractive index. Stringent evidence of the excitation of light bullets is based on time-gated images

and spectra which perfectly match our numerical simulations. Furthermore, we reveal a novel evolution

mechanism forcing the light bullets to follow varying dispersion or diffraction conditions, until they leave

their existence range and decay.
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Since their theoretical prediction [1], light bullets (LBs)
have constituted a frontier in nonlinear science. These
solitary waves are spatiotemporally localized and, in par-
ticular, find their manifestation in three-dimensional (3D)
systems governed by the nonlinear Schrödinger equation
(NLSE), such as quantumgases [2], evaporating black holes
[3], and solid state physics [4]. In contrast to the one-
dimensional case (e.g., optical fibers [5]), where the
NLSE is fully integrable and supports soliton solutions,
higher-dimensional solitary waves and especially LBs are
not solitons in the strict sense of integrability of the dynamic
equations, thus being subject to instability [6] and limited
existence range [7]. Their appeal as particlelike wave pack-
ets triggered a two-decades-long research for a stabilization
mechanism enabling full-dimensional, nonlinear light lo-
calization. Theory shows that LBs can be stabilized by a
variety of experimentally motivated modifications of the
NLSE, such as saturation of the nonlinearity [8], higher-
order diffraction or dispersion [9], or nonlocal nonlinearity
[10]. Transversally modulated, nonlinear media [11],
e.g., arrays of evanescently coupled waveguides, have
also been predicted to support stable LBs [7,12]. Despite
theoretical progress, LBs eluded experimental observation.
Experiments designed to observe spatiotemporal localiza-
tion in nonlinear planar media [13] revealed spatiotemporal
compression, but the complexity of the observations
could not be readily associated to LBs. The complexity is
due to existing optical media which support LBs only for
conditions where effects beyond the Kerr nonlinearity are
influential, e.g., self-steepening and intrapulse Raman scat-
tering. For this reason, spatiotemporal solitary waves were

first observed in �ð2Þ media [14] where higher-order effects
were made negligible by artificially enhancing temporal

dispersion by means of the tilted pulse technique [15]. We
remark that even in far-from-ideal systems the concept of
solitary waves is a useful tool, allowing the understanding
of complex nonlinear phenomena such as optical rogue
waves [16] and supercontinuum generation [17,18]. In
fact, the name ‘‘quasisoliton’’ was recently used to describe
nearly stationary spatiotemporal wave packets propagating
in planar waveguides arrays [19].
In this Letter, we report the first observation of 3D LBs

in a two-dimensional array of coupled waveguides. We
have found that due to higher-order effects, LBs evolve
following varying dispersion or diffraction conditions until
they leave their existence range [7] and decay.
The experimentally investigated system consists of a

hexagonal array of evanescently coupled single mode fi-
bres, where a focused femtosecond pulse is used to excite
the central waveguide. A microscopic image of the array
cross section is shown in Fig. 1 along with a sketch of the
experimental setup. The high regularity and symmetry of
the observed diffraction pattern [Fig. 1(c)] proves the un-
precedented quality of the array [20] and is a key for the
observation of LBs, which was possible only with
high-resolution, spatially resolved optical pulse cross-
correlation techniques [21,22] [see Fig. 1(a)].
Temporal dispersion is anomalous around the excitation

wavelength �0 ¼ 1550 nm, but terms beyond the parabolic
approximation cannot be neglected. Spatial discrete dif-
fraction originating from interwaveguide coupling [11] is
also inherently wavelength-dependent.
Figure 2 summarizes the results of experiments where

the central waveguide of a 40-mm-long array of fibers was
excited with 170-fs pulses. The spatial profile, the intensity
cross-correlation trace of the central waveguide, and the
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experimental and simulated spatiotemporal profiles of the
output wave packets are shown for three different input
power levels. At low input power (P0 ¼ 0:2 MW) light
spreads into the neighboring waveguides while the pulse
profile broadens [Fig. 2(a)–2(d)]. By raising the input

power to P0 ¼ 0:4 MW, we observe a sharp localization
of light in the initially excited waveguide with a pulse
compression below the resolution of the cross correlator
[� 60 fs; see Figs. 2(e)–2(h)], while visible radiation is
observed even by the naked eye. For higher powers (P0 ¼
1:0 MW), the light localization is enhanced and multiple
short peaks are observed in the cross correlations, suggest-
ing the formation of bulletlike entities.
Numerical simulations are based on the unidirectional

Maxwell equations [17], which describe accurately the
propagation of light in the array. Dispersion to all orders,
wavelength-dependent discrete diffraction, Kerr nonlinear-
ity, intrapulse Raman scattering, and self-steepening are
accounted for. The remarkable agreement with the experi-
ment [compare Figs. 2(d), 2(h), and 2(n)with Figs. 2(c), 2(g),
and 2(m)] did not require the adjustment of free parameters,
thus justifying the use of numerical simulations to show
that the observed localized wave packets are indeed LBs.
Figure 3(a) displays the evolution of the temporal profile of
the light in the central waveguide of the array for an input
power of P0 ¼ 0:9 MW. Within the first 15 mm of propa-
gation, the excited pulse gets spatiotemporally focused and
splits into several fragmentswith (FWHM)durations ranging
from 15 to 30 fs. The central wavelength of the fragments
increases rapidly to larger values in proportion to their initial
intensity, thus accounting for the observed distribution of
group velocities. The brightest pulse experiences several
collisions and eventually propagates as virtually stationary
LBs to a distance of z ¼ 40 mm [see Fig. 3(b)], beyond

FIG. 1 (color online). (a) Layout of the experiment. A focused
170-fs infrared pulse centered at �0 ¼ 1550 nm excites the central
waveguide of a sample of the waveguide array (b). The output
radiation of the sample is characterized by an infrared camera (IR-
Camera) and by a spatially resolved optical gating via frequency
mixing in a 25-�m-thin�-barium borate crystalwith a delayed 60-
fs probe pulse at �p ¼ 800 nm. (c) Experimental discrete linear

diffraction pattern at the end of a 50-mm-long sample. Parameters
of the sample: arraymade of 91 silica cores embedded in a fluoride-
doped silica glass; latticeperiodofd¼33:2�0:4�m, a core radius
of r¼9:8�0:2�m, and an index contrast of �n ¼ 1:2� 10�3.

FIG. 2 (color online). Experimental observation and simulation of LBs for a 40-mm-long waveguide array. Spatial infrared camera
image (first column). Temporal cross-correlation trace of the central waveguide (second column) with the original experimental data
(blue line) and after deconvolution of the probe pulse profile (red line). Experimental spatiotemporal images (third column) and
corresponding simulated spatiotemporal images derived (fourth column). Surfaces in the spatiotemporal images are normalized
isointensity levels as indicated in the legend in (d). The three rows correspond to the three different input peak powers.
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which the wave packet suddenly spreads in space and time.
Because the central wavelength of the LB is not constant and
the characteristic dispersion and diffraction lengths (Ldisp

and Ldiff , respectively) are wavelength-dependent, we can
gauge the robustness of the localization of light in the array
by defining an average dispersion and diffraction length
hLdispi and hLdiffi for the brightest pulse (see the definition
at the end of the Letter). According to this definition, nearly
stationary propagation is achieved over 1.9 hLdiffi and 9.0
hLdispi.We also proved that the light localization is not due to

conical waves [23] by numerically verifying that the wave
packets do not self-heal.

This scenario of the LB evolution has been confirmed
experimentally by means of frequency-resolved optical
gating (FROG) [22] obtained from a set of spatiotemporal
images, each recorded by inserting after the sum-frequency
crystal a 10-nm interferential filter chosen from a set of 6,
with central transmission wavelength ranging from 510 to
560 nm. This is equivalent to sampling the time-frequency
plane of the LBs between � ¼ 1423 nm and � ¼
1870 nm. In the left column of Fig. 4, we show the experi-
mental FROG traces for the pulse in the central waveguide
of three samples of the array (length L ¼ 25, 40, and
60 mm, P0 ¼ 0:9 MW). Frequencywise interpolation was
used to display the data. Two LBs with central wavelengths
of 1650 and 1810 nm are observed at z ¼ 25 mm. Only a
LB with �c ¼ 1790 nm is observed at z ¼ 40 mm. The
experimental data can be interpreted by the corresponding
simulated FROG traces (Fig. 4, right column), which ac-
curately reproduce the observed features. The simulation
reveals that the long-wavelength LB observed at z ¼
25 mm is redshifted to �c ¼ 1950 nm (i.e., beyond the

spectral acceptance of our FROG), while the bluest is
actually the one observed at z ¼ 40 mm. Further propaga-
tion to z ¼ 60 mm leads to full decay of the LBs captured
in the measurements at z ¼ 25 and z ¼ 40 mm, and only
weaker, moderately redshifted fragments surviving colli-
sions in the central wave packet are observed.
The key to understanding the LBs decay mechanism is

to consider the influence of the wavelength-dependent
dispersion and diffraction parameters of our system.
While propagating through the sample, the LB is redshifted
due to self-steepening and Raman scattering. In this
course, the LB reshapes adiabatically to follow the in-
creased dispersion and diffraction strength pertaining to
the shifted wavelength. Because for longer wavelengths
the coupling strength between waveguides increases expo-
nentially, the energy threshold [7] required for the LB
propagation grows steeply. Therefore the solitary wave
will eventually decay when the dispersively modified en-
ergy threshold exceeds the energy of the excitation. The
scenario is illustrated in Fig. 5. The curved surface defines
the temporal width of the idealized LB solution of the
discrete NLSE [12] without self-steepening and Raman
scattering, determined uniquely for each carrier wave-
length � and energy E of the central waveguide component
of the LB. Additionally, the trajectory of the brightest pulse
appearing in the dynamic simulation in Fig. 3(a) is overlaid

FIG. 4 (color online). Experimental (left) and simulated (right)
FROG traces of the pulse propagating in the central waveguide
measured at the output of samples. Top: L ¼ 25 mm. Center:
L ¼ 40 mm. Bottom: L ¼ 60 mm. The wavelength scale is
shown between the columns. Input power P0 ¼ 0:9 MW.

FIG. 3 (color online). Numerical propagation of LBs in the
central waveguide for P0 ¼ 0:9 MW. (a) Wave packet evolution
in the time-propagation plane. The diffraction and dispersion
length corresponding to a �FWHM ¼ 25 fs pulse for the minimal
and maximal central wavelength of the LB are overlaid to the
graph for comparison. (b) Plot of pulse duration and central
wavelength for the brightest LB seen in (a).
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to the plot (green line) along with its orthogonal projec-
tions (gray lines). After strong pulse reshaping (region A),
the trajectory relaxes to the surface of the ideal LBs (region
B), until the redshift pulls it behind the surface, where no
LB can exist (region C). Because of the finite energy
threshold for the existence of 3D discrete-continuous
LBs [7], this decay scenario is quite generic for experi-
mental systems. Notice that the trajectory of the bullet in
the E-� plane indicates that radiation losses are rather
weak. To show that the decay mechanism is independent
from radiation losses, we performed a simulation in an
almost ideal Kerr medium with pure quadratic chromatic
dispersion, and longer coupling length [Ldiffð1550 nmÞ ¼
96 mm]. These artificial conditions ensure that radiation
from the LBs is strongly suppressed by large phase mis-
match [18] and lower power excitation threshold, due to
weaker coupling. The redshifting mechanism is retained by
including self-steepening and Raman scattering. The re-
sults of the simulation reveal essentially the same dynam-
ics as depicted in Fig. 5, while the propagation range of the
LB normalized to Ldiff is expanded only by a factor of 1.5
(3 hLdiffi in total).

In conclusion, we reported for the first time the experi-
mental observation of 3D nonlinear LBs. Our work re-
vealed a new evolution scenario of adiabatic reshaping of
LBs which sheds new light on previously puzzling results
obtained in similar systems [13] and offers an interpreta-
tion in terms of evolving LBs for the dynamic of the so-
called spatiotemporal quasisolitons [19]. We point out that
the identification of the decay mechanism opens new per-
spectives for the design of systems aimed at the excitation
of very long-lived LBs.

Definition of average diffraction and dispersion
length.—The average dispersion length over the path
from z1 to z2 is defined as

hLdispi ¼ 1

z2 � z1

Z z2

z1

�0ð~zÞ2
k ½d2�=d!2�!cð~zÞ k

d~z; (1)

where �ð!Þ is the propagation constant of light in the
single waveguide and �0ð~zÞ and !cð~zÞ are the 1=e pulse
duration and the carrier angular frequency of the bullet at
the propagation distance ~z, respectively. Analogously, we
define the average diffraction length on the same path as

hLdiffi ¼ 1

z2 � z1

Z z2

z1

�

2
ffiffiffi
6

p
c½!cð~zÞ�

d~z; (2)

which relates to the waveguide coupling strength cð!Þ
[11]. For the simulation of Fig. 3(a), hLdispi ¼ 2:6 mm,

and hLdiffi ¼ 12:7 mm.
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FIG. 5 (color online). Green line: Trajectory in parameter space
of the brightest LB appearing in the simulation of Fig. 3(a). The
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