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Quantum entanglement, one of the defining features of quantum mechanics, has been demonstrated in a

variety of nonlinear spinlike systems. Quantum entanglement in linear systems has proven significantly

more challenging, as the intrinsic energy level degeneracy associated with linearity makes quantum

control more difficult. Here we demonstrate the quantum entanglement of photon states in two

independent linear microwave resonators, creating N-photon NOON states (entangled states jN0i þ
j0Ni) as a benchmark demonstration. We use a superconducting quantum circuit that includes Josephson

qubits to control and measure the two resonators, and we completely characterize the entangled states with

bipartite Wigner tomography. These results demonstrate a significant advance in the quantum control of

linear resonators in superconducting circuits.
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Quantum superposition and entanglement have been
demonstrated experimentally using spinlike physical sys-
tems ranging from atoms to electronic circuits [1–7]. These
systems all display strong nonlinearity, and are used be-
cause this nonlinearity allows straightforward quantum
control by classical means. The quantum control of linear
systems, exemplified by the harmonic oscillator, is by
contrast more difficult, and has only been achieved using
nonlinear intermediaries: Atoms [1,8] to control optical
cavities, ions to control ion motion [9,10], and supercon-
ducting qubits to control photons in microwave resonators
[11–14]. Quantum entanglement of cavity photons still
presents a significant challenge: Experiments have demon-
strated maximally entangled photons in different polariza-
tion modes of the same cavity [15] and in free space [16],
but the entanglement of photons in two physically distinct
cavities [17–19] has proven more elusive.

Here we show the deterministic generation of entangled
photon states in two spatially separated microwave reso-
nators, achieved by manipulating the photon states with a
pair of superconducting phase qubits. We use as a bench-
mark the generation of NOON states [20–24], comprising a
total of N photons in the two resonators (A and B), en-
tangled in the quantum state

jc i ¼ 1
ffiffiffi
2

p ðjNiAj0iB þ j0iAjNiBÞ; (1)

with N photons in resonator A and zero in B, superposed
with the state with the occupation numbers reversed. Such
a state has the same degree of entanglement as the Bell
state, but with N excitations. We also generate MOON
states, in which, e.g., resonator A has M or zero quanta,
entangled with resonator Bwith zero orN quanta. We fully
characterize the two-resonator photon states using bipartite

Wigner tomography, which represents a nontrivial exten-
sion of single-cavity Wigner tomography [1,9,12–14], and
allows us to distinguish entanglement from an incoherent
ensemble.
To accomplish this goal, we developed a new quantum

circuit comprising two superconducting phase qubits [25]
and three microwave resonators. A sketch of the circuit
topology is shown in Fig. 1(a). The circuit includes a
coupling resonator C, connected to both qubits, and two
state storage resonators A and B, each coupled to one qubit.
The resonator frequencies are all different, which allows us
to frequency select the qubit-resonator interactions. More
detailed information regarding the device design, fabrica-
tion and experimental setup can be found elsewhere
[12–14,26].
The basic method for generating two-resonator en-

tangled states, illustrated in Fig. 2, is to excite and then
entangle the two qubits using the coupling resonator. We
can swap the resulting Bell state jegi þ jgei to the two
storage resonators, creating an N ¼ 1 NOON state j10i þ
j01i. If we want to generate higher N photon states, we
instead selectively excite each qubit to its next higher
energy level jfi [Fig. 1(b)], generating the state jfgi þ
jgfi, thus using the qubits as ‘‘qutrits’’ [27,28]. The re-
quired microwave excitation is selective, due to the anhar-
monicity of the qubits. The qubit excitation is then
swapped to each storage resonator through the qubit jfi $
jei transition, creating a four-fold entangled state jeg10i þ
jge01i, where the first two letters indicate the qubit states,
and the second two numbers the storage resonator states.
We then reexcite the qubits to their jfi states, and again
swap the excitation to the resonators, generating jeg20i þ
jge02i. This process can be repeated until the entangled
state has N � 1 photons. In the final step, each qubit’s
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jei $ jgi transition is brought on resonance with the cor-
responding storage resonator, swapping the last excitation
and leaving the system in jggN0i þ jgg0Ni ¼
jggi � ðjN0i þ j0NiÞ, an N-photon NOON state.

We analyze the final resonator state using the qubits as
probes. The simplest analysis uses a coincidence measure-
ment: We bring the qubits into resonance with their corre-
sponding storage resonators for an interaction time �, after
which both qubits are measured simultaneously. The
preparation and measurement sequence is repeated �103

times, yielding the joint-qubit state probabilities, Pgg, Pge,

Peg, and Pee, where Pge is the probability of measuring the

first qubit in its ground state with the second qubit in its
excited state, and so on. We then vary the interaction time
�, capturing the evolution of these probabilities. If a reso-
nator has n photons, the nth photon will swap between the
qubit and resonator at a rate scaling as

ffiffiffi
n

p
, while for more

complicated states, the interaction is a sum of components
oscillating at their respective frequencies, weighted by the
photon occupation probabilities [13,14].

For resonators entangled in a NOON state, a joint mea-
surement should correspond to either N photons in one
resonator and zero in the other, or to the reverse situation;
the measurement of the qubits ‘‘collapses’’ the system onto
one or the other outcome. Thus in one measurement at
most one of the qubits will be in the excited state.
When averaged over many measurements, the maximum
probability of measuring a particular qubit in jei is 1=2,

while the probability of measuring both qubits in jei should
be zero. Therefore we expect that Peg and Pge will oscillate

between 0 and 1=2, Pee will be zero, and Pgg should equal

1� Pge � Peg � Pee.

Coincidence measurements are shown in Fig. 3 for
NOON states up to N ¼ 3, and are consistent with these
expectations. The oscillations seen in these measurements
are, however, insufficient proof of resonator entanglement,
as an incoherent mixed state can give the same results.
To demonstrate this, we have controllably generated a
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FIG. 2 (color online). NOON state preparation sequence.
Resonators are represented by dashed lines and the qubit jgi $
jei and jei $ jfi transitions by dark and light (color) solid lines,
respectively. (1) q0 is excited to jei and half-swapped to C,
generating the Bell state je0i þ jg1i. (2) Coupling resonator
swapped to q1, generating jegi þ jgei. (3a) N ¼ 1 NOON state
j10i þ j01i generated by fully swapping each qubit to its storage
resonator. For higher N states: (4) Qubits excited to jfgi þ jgfi.
(5) One photon swapped into storage resonators, generating
jeg10i þ jge01i. Steps (4) and (5) are repeated N � 1 times,
generating jegðN � 1Þ0i þ jge0ðN � 1Þi. (6) Final photon trans-
fer generates (7) N ¼ 2 (or higher N) NOON state.
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FIG. 1 (color online). (a) Device circuit schematic. Coupling
resonator C is connected to q0 and q1 using �1:9 fF coupling
capacitors that yield 20 MHz coupling strengths, while storage
resonator A (B) is connected to q0 (q1) through a �1:9 fF
coupling capacitor with 17 MHz coupling strength. (b) Qubit
spectroscopy, showing probability Pe (color bar) vs microwave
frequency and flux bias for each qubit. Avoided-level crossings
near 6.8 GHz (dash-dotted lines) are due to the coupling reso-
nator C and near 6.3 GHz (dashed lines) due to each qubit’s
storage resonator. Lower right panel shows magnified view of
circled area, upper right panel shows three qubit levels.
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FIG. 3 (color online). Qubit coincidence probability measure-
ments for N ¼ 1, 2, and 3 NOON states, and for a mixed state.
Pge (blue) and Peg (red) oscillate with interaction time � at a rate

/ ffiffiffiffi
N

p
, while Pee (brown) always remains small. For the mixed

state, behavior is nearly identical to the N ¼ 1 NOON state.
Lines are fits to the data. Statistical errors, from the measured
probability spread of �2%–3%, are shown only for Pgg [26].

Horizontal and vertical axes are same for all plots.

PRL 106, 060401 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

11 FEBRUARY 2011

060401-2



synthetic ensemble comprising a 50% population of j10i
states and 50% j01i states [26]. Coincidence measurements
[Fig. 3] of this synthetic mixed state generate outcomes
identical to those of the N ¼ 1 NOON state.

A more complete resonator measurement, that can re-
solve entangled from mixed states, uses bipartite Wigner
tomography, a significant extension of single resonator
tomography [9,13,14]. This involves injecting a coherent
Gaussian microwave pulse into each of the storage reso-
nators, with controlled amplitude and phase, displacing the
resonator states in phase space. The resonators are then
simultaneously measured with a joint probability measure-
ment, now as a function of the amplitude and phase of the
coherent pulses. From the complete set of measurements,
the two-resonator density matrix can be calculated [26].

In Fig. 4 we display the amplitudes of the density
matrices measured for resonator NOON states up to
N ¼ 3, as well as for the mixed state. While there are
nonidealities, the desired nonzero matrix elements are
clearly apparent for the NOON states, while for the mixed
state, the density matrix has only zero-valued off-diagonal
elements. The state preparation fidelities, F ¼ hc j�jc i,
are found to be 0:76� 0:02 (N ¼ 1), 0:50� 0:02 (N ¼ 2),
and 0:33� 0:02 (N ¼ 3). For N ¼ 1, the most probable
entanglement of formation (EOF) [29] is EOF ¼ 0:51,
while for N ¼ 2 and N ¼ 3, EOF ¼ 0:31 and 0.28, respec-
tively; for the mixed state, the EOF is zero. We also
calculate the negativity Neð�Þ ¼

P
j maxð0; �jÞ, where

�j are the eigenvalues of the partial transpose �PT of the

density matrix [22,30], and Neð�Þ> 0 indicates entangle-
ment. The negativities are found to be 0:56� 0:03
(N ¼ 1), 0:32� 0:03 (N ¼ 2), and 0:27� 0:01 (N ¼ 3);
for the mixed state we find zero with an upper bound of
0.001. The decrease of these values with photon number

N is compatible with expectations: The state preparation
requires phase coherence of the four-element entangled
states for most of the preparation sequence, which is
limited by the qubit coherence time T2 [26]. Other than
this technical limitation, the deterministic generation is
completely scalable to large N.
A hallmark of NOON states is their rapid phase evolu-

tion [20,21,23,24], which can be verified by Wigner to-
mography using two distinct methods. For the N ¼ 1 state,
after entangling the qubits in a Bell state, we wait for a
variable time and then swap the state into the storage
resonators. The density matrices measured at three differ-
ent delay times are shown in Fig. 5(a). The phases of the
off-diagonal elements rotate with time due to the qubit-
resonator frequency difference, as in Fig. 5(b), showing the
expected linear dependence.
This phase-measurement method suffers from the short

qubit dephasing time. A second method is to change the
phase reference for the coherent pulses used in the Wigner
tomography, avoiding storage of the state in the qubit. We
add an additional phase to the pulses applied to resonator A
only. The resulting density matrices show the expected
rotation of the off-diagonal elements. In Fig. 5(c) we plot
the off-diagonal phase angle for differentN; theN ¼ 3 state
evolves 3 times faster than the N ¼ 1 state, as expected.
We also used tomography to measure the NOON state

decay [26]. We find that the off-diagonal elements decrease
at approximately the same rate as the diagonal elements,
with a decay time �D � 3 �s, consistent with environmen-
tal fluctuations that are uncorrelated in time [14] and to a
limited degree in space, the latter supported by the absence
of correlation between the two resonators. In essence, we
have performed a two-point sample of the noise correlation
in space.
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FIG. 4 (color online). NOON and mixed state density matrix amplitudes, reconstructed in the photon-number basis from bipartite
Wigner tomography; states are labeled jmni where m is the photon number in resonator A and n that in B. Bar heights and colors
represent matrix element amplitudes. The dominant amplitudes for all three NOON states are in the expected locations, although the
off-diagonal elements decrease with N, due to the finite qubit dephasing time. Errors for the density matrix elements are not shown but
are small [26].
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We note that the generation sequence allows an addi-
tional flexibility: We can add different numbers of quanta
to the resonators, thus generating MOON states, jc i ¼
jM0i þ j0Ni. An example with M ¼ 2 and N ¼ 1 is de-
tailed in [26].

The capabilities we have demonstrated here, generating
complex entangled photon states in two resonators, hold
promise for new quantum architectures in which super-
conducting resonators play a more central role. The proto-
col can be extended in a natural way to entangle larger
numbers of resonators, allowing, e.g., the direct generation
of resonator Greenberger-Horne-Zeilinger and W states
[2,4,9,16,21,23]. The longer coherence times achievable
in superconducting resonators will be of direct utility in
performing more complex quantum algorithms, furthering
the capabilities of superconducting quantum circuit
architectures.
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FIG. 5 (color online). Phase sensitivity of NOON states up to
N ¼ 3. (a) Density matrix for N ¼ 1 NOON state at different
times after qubit entanglement. Each element is represented by
an arrow, with orientation determined by the phase angle (scale
on bottom left). Off-diagonal elements rotate with delay
time (black: 0 ns, blue: 12 ns, red: 24 ns), due to frequency
difference between the qubit operating point and resonator.
Dephasing causes a decrease in amplitude of off-diagonal ele-
ments. (b) Phase angle of the upper left nonzero off-diagonal
element in (a) versus delay time. Line is fit to a rotation rate of
�f ¼ 21:6� 0:8 MHz, which corresponds well to set frequency
difference. Error bars indicate maximum phase uncertainty.
(c) Rotation angle of off-diagonal element versus controlled,
additional phase angle used in coherent state displacement. Lines
are fits (slopes indicated on plot), consistent with expected phase
sensitivity. Confidence bounds are as in (b), with uncertainty
increasing with N due to increased phase sensitivity.
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