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We show that simple laser configurations can give rise to ‘‘optical flux lattices,’’ in which optically

dressed atoms experience a periodic effective magnetic flux with high mean density. These potentials lead

to narrow energy bands with nonzero Chern numbers. Optical flux lattices will greatly facilitate the

achievement of the quantum Hall regime for ultracold atomic gases.
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One of the most important techniques in the ultracold
atom toolbox is the optical lattice [1]: a periodic scalar
potential formed from standing waves of light. Optical
lattices are central to the use of atomic gases as quantum
simulators, and allow the exploration of strong-correlation
phenomena related to condensed matter systems [2,3].
Their usefulness derives from the fact that the scalar po-
tential has a length scale, set by the optical wavelength �,
that is similar to the typical interatomic spacing.

Largely separate have been the experimental develop-
ments of effective vector potentials, representing the cou-
pling of a charged particle to a magnetic field. A uniform
magnetic field can be simulated for neutral atoms using
rotation [1,4,5]. Gauge fields leading to an effective mag-
netic field can also be generated by optical dressing [6].
These techniques have allowed experimental studies of
quantized vortices in condensed Bose and (paired) Fermi
gases [1,4,7–9]. An interesting regime of strong correla-
tion, with connections to the fractional quantum Hall ef-
fect, is expected when the effective magnetic flux density

n� is sufficiently high that the length scale n�1=2
� is com-

parable to the interatomic spacing [5,10]. However, the
magnetic flux densities achievable using existing tech-
niques are relatively small for large systems [6,9,11], so
this strongly correlated regime occurs at very low densities
when the gas is weakly interacting and highly susceptible
to uncontrolled perturbations [5,11].

In this Letter we describe simple laser configurations
that use optical dressing to generate what we refer to as
‘‘optical flux lattices.’’ While a conventional optical lattice
imprints a periodic scalar potential, an optical flux lattice
also imprints a periodic magnetic flux density with nonzero
mean, and large magnitude �n� � 1=�2. We emphasize that

the magnetic flux density is a continuous function of
position, so these potentials are distinct from proposed
ways to imprint gauge potentials onto deep optical lattices
which apply only in the tight-binding limit [12–14]; fur-
thermore, optical flux lattices require only a small number
of lasers, so are much easier to implement than these tight-
binding proposals. We show that optical flux lattices lead to
narrow bands with nonzero Chern numbers [15]. In par-
ticular the lowest energy band is topologically equivalent

to the lowest Landau level. Since the length scale �n�1=2
� ��

is similar to the typical interatomic spacing, optical flux
lattices will allow the study of quantum Hall physics at
high densities where interaction energy scales are large.
We consider an atom moving in optical fields within the

rotating wave approximation [16], with Hamiltonian

Ĥ ¼ p̂2

2m
Î þ VM̂ðrÞ (1)

where V is the energy scale of the optical potential, of

dimensionless form M̂ðrÞ. We focus on two-level systems
and write

M̂ ¼ ~MðrÞ � ~̂� ¼ Mz Mx � iMy

Mx þ iMy �Mz

� �
(2)

with ~̂� the vector of Pauli matrices. Additional scalar
potentials can be added by conventional optical lattices;
for simplicity, we neglect these here. The off-diagonal
terms (Mx;y) arise from the optical coupling that effects

the interspecies conversion [16]. The diagonal term (Mz)
represents a species-dependent potential. One possible
implementation of the two-level system is with the ground
state and long-lived excited state of an alkaline earth atom
or ytterbium [14], in which case Mz can be generated
by a laser at an ‘‘antimagic’’ wavelength, �am [14]. As
we shall describe below, optical flux lattices can be formed
by a standing wave at �am and three travelling waves
of the coupling laser [17]. We shall restrict attention to
quasi-two-dimensional (2D) systems with r ¼ ðx; yÞ. The
resulting flux lattices are readily adapted to 3D, with net
flux along one direction.
The emergence of an effective gauge potential is best

understood when the kinetic energy is small compared to
the energy spacing of the (local) dressed states, obtained

from the eigenvalues of VM̂. The atom then moves through
space adiabatically, staying in a given dressed state. The
adiabatic limit is always valid for sufficiently large V

provided the spectrum of M̂ is nondegenerate. Assuming
this to be true (as shall be verified below for the cases of
interest), we consider the adiabatic motion in a normalized
dressed state
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j�ðrÞi ¼ �1ðrÞ
�2ðrÞ

� �
: (3)

Projecting (1) onto adiabatic motion on the state (3) leads
to an effective Hamiltonian with both a scalar and a vector
potential, the latter given by [6]

qA ¼ i@h�jr�i (4)

for effective charge q. The number density of magnetic
flux quanta perpendicular to the xy plane is therefore

n� � qB

h
¼ q

h
r�A: (5)

For optical fields of wavelength �, it is natural to assume
that the vector potential (4) is smoothly varying with
jqAj & h=�. Then, the maximum mean flux density in a
region of space of sides Lx, Ly � � may be found by

applying Stokes’ theorem:
R
n�d

2r � �n�LxLy ¼ ðq=hÞ�H
A � dr & ðLx þ LyÞ=�, leading to �n� & 1=L�with L ¼

minðLx; LyÞ. All existing proposals for optically induced

gauge fields in the continuum [6], and the scheme imple-
mented in Ref. [9], are of this form with the scale L set by
the width of the cloud. Since, typically, L � �, this leads
to relatively small flux density, �n� � 1=L�.

Although apparently very general, these considerations
neglect the fact that smoothly varying optical fields can
induce singularities in qA. These singularities depend on
the gauge used for (3), and cause no singularities in gauge-
invariant properties. Such issues arise whenever a Uð1Þ
gauge field has nonzero flux through a closed manifold,
notably leading to Dirac strings for a magnetic monopole.
For the optical flux lattices we propose here, there is a net
flux through a unit cell which (due to the spatial periodic-
ity) has the topology of a torus. We avoid technical diffi-
culties of the gauge-dependent singularities by defining the
local Bloch vector

~nðrÞ ¼ h�ðrÞj ~̂�j�ðrÞi (6)

for which ~n � ~n ¼ 1. The flux density is then

n� ¼ � 1

8�
�ijk���ni@�nj@�nk: (7)

This is (minus) the ‘‘topological density’’ of the map from
position space, r ¼ ðx; yÞ, to the surface of the Bloch
sphere, ~n [18]. The number of flux quanta through a region
A is

R
A n�d

2r ¼ �=4� where � is the solid angle that

region A maps to on the Bloch sphere. Thus, each time the
Bloch vector wraps the surface of the sphere corresponds
to one magnetic flux quantum. Optical flux lattices are
spatially periodic configurations for which the Bloch vec-
tor wraps the sphere a nonzero integer number, N�, times

in each unit cell. The lattice vectors a1 and a2 are both of
order the optical wavelength �, so the mean flux density is
of order �n� � N�=�

2 which is large. We focus on two

cases of high symmetry which achieve this goal.

Square lattice.—Consider the optical coupling

M̂ sq ¼ cosð�xÞ�̂x þ cosð�yÞ�̂y þ sinð�xÞ sinð�yÞ�̂z

(8)

where � � 2�=a. This has square symmetry with a1 ¼
ða; 0Þ, a2 ¼ ð0; aÞ. Achieving this high symmetry in ex-
periment may involve tilting the lasers out of the xy plane
to tune the periods of the coupling and the species-
dependent fields [19]. The eigenvalues are nondegenerate
at all positions, so the dressed states admit an adiabatic
limit. Figure 1(a) shows that, for the lower energy dressed
state, the (nx, ny) components of the Bloch vector exhibit

two vortices and two antivortices in the unit cell. These
vortices lead to gauge-dependent singularities in the vector
potential. However, the Bloch vector varies smoothly, with
nz ¼ �1 at the vortex cores, in such a way that all four of
these regions wrap the sphere in the same sense and
contribute a flux density of the same sign. The flux density
is shown in Fig. 1(b). It is everywhere non-negative and has
total flux N� ¼ 2 in the unit cell. (This may be seen by

noting that the two vortices and two antivortices cause ~n to
wrap the Bloch sphere twice.) The flux density is not
constant, and vanishes at four points in the unit cell.
These four points coincide with the locations at which
the adiabatic energy is minimum, Fig. 1(b), so form the
lattice sites in the tight-binding limit.
Triangular lattice.—An optical flux lattice with triangu-

lar symmetry is generated by

M̂ tri ¼ cosðr � �1Þ�̂x þ cosðr � �2Þ�̂y þ cosðr � �3Þ�̂z

(9)

where �1 ¼ ð1; 0Þ�, �2 ¼ ð12 ;
ffiffi
3

p
2 Þ� and �3 ¼ �1 � �2,

with � � 4�=ð ffiffiffi
3

p
aÞ, giving lattice vectors a1 ¼

ð ffiffiffi
3

p
=2;�1=2Þa and a2 ¼ ð0; 1Þa. Again, the eigenvalues

are nondegenerate at all positions. The properties of the

a

a (b)(a)

FIG. 1 (color online). Properties of the lower energy dressed
state for the square optical flux lattice (8), as a function of
position in the unit cell. (a) Local Bloch vector, as represented
by the vector (nx, ny) and contours of nz (light shading for nz < 1

and dark for nz > 1). (b) The local flux density n� is maximal on

the lines x ¼ �a=4 and y ¼ �a=4 and vanishes at four points.
(Light (dark) shading indicates large (small) flux density n�.)

The lattice sites and nearest-neighbor hopping in the tight-
binding limit are indicated by dark circles and dashed lines.
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lower energy dressed state are shown in Fig. 2. The flux
density is maximum on the sites of a honeycomb lattice,
and vanishes on the triangular lattice dual to this. The tight-
binding limit involves tunneling between the sites of this
dual triangular lattice, Fig. 2(b).

The above optical potentials (8) and (9) can be readily
generalized to many other cases with nonzero mean flux.
(There are also many cases with zero mean, but nonzero
local flux density.) The central requirements to generate an
optical flux lattice are threefold. First, the coupling laser
(Mx;y) must generate optical vortices. A 2D lattice of

optical vortices can be formed from a minimum of three
travelling waves [20]. The resulting optical field is peri-
odic, with an equal number of (single-winding) vortices Nv

and antivorticesNav in a unit cell [21]. Second, the species-
dependent potential (Mz) must be nonzero at the cores of
these vortices, such that there is no degeneracy of the
dressed states at these points. A small nonzero Mz causes
the cores of the vortices to have the topology of ‘‘merons’’
[18], in which ~nðrÞ sweeps over half of the Bloch sphere.
For a given meron, the sign ofMz at its core times the sign
of its vorticity determines whether it contributes þ1=2 or
�1=2 a flux quantum. The total number of flux quanta
through the unit cell isN� ¼ Nþ

v � Nþ
av, whereN

þ
v=av is the

number of vortices or antivortices at which Mz is positive.
Thus, the third requirement for a nonzero mean flux is that
Mz varies in space such that Nþ

v � Nþ
av.

We have explored the properties of optical potentials
generated by simple laser patterns. An optical flux lattice
can be generated using just five travelling waves: three
travelling waves of the coupling laser (Mx;y) to effect the

vortex lattice, and a standing wave of the species-
dependent potential (Mz). [One such example is to remove
one of the four travelling waves from the optical coupling
in (9).] In all cases the local flux density is inhomogeneous
in space, in some even changing sign. Indeed, one can

show that, for smoothly varying optical fields, the flux
density must have at least Nv þ Nav zeros in the unit cell
[22] The above cases (8) and (9) have non-negative flux
density with the minimum number of zeros. For three-, or
more-, level systems, an optical flux lattice can have a flux
density that nowhere vanishes. We have examples of opti-
cal potentials that lead to such cases. However, these
require more involved laser configurations, so we do not
pursue this here.
Having determined the properties of the optical flux

lattices in the adiabatic limit, we now turn to describe their
band structures, obtained from the eigenvalues of (1). The

laser potentials M̂sq (8) and M̂tri (9) are clearly invariant

under translations by the respective lattice vectors a1;2. In

fact, they enjoy higher translational symmetry, being in-
variant under the unitary transformations

T̂ 1 � �̂ye
ð1=2Þa1�r T̂2 � �̂xe

ð1=2Þa2�r (10)

which effect translations by 1
2a1;2 and rotations in spin

space. These operators do not commute, but satisfy

T̂ 2T̂1 ¼ �T̂1T̂2: (11)

This indicates that they represent magnetic translations
around a region of space (enclosed by 1

2a1 and 1
2a2) that

contains 1=2 a flux quantum. As is conventional in systems
with magnetic translation symmetry [15], we define a
magnetic unit cell that encloses an integer number of
flux: we choose a1, a2=2. Writing the eigenvalues of the

associated (commuting) translation operators T̂2
1 and T̂2 as

eik�a1 and eik�a2=2 defines the Bloch wave vector k and the

associated Brillouin zone. The additional symmetry T̂1 and
the condition (11) cause the energy spectrum Ek for all
bands to be invariant under k � a2=2 ! k � a2=2� � with
k � a1 ! k � a1.
For the square optical flux lattice (8), a solution of the

band structure shows that the lowest energy band does not
overlap any higher band for V * 0:1@2�2=m. The Chern
number [15] of this band is 1, the sign being reversed under
an odd number of sign changes to the terms in (8). Thus,
the lowest energy band is topologically equivalent to the
lowest Landau level of a charged particle in a uniform
magnetic field. It is instructive to consider the band struc-
ture for V � @

2�2=m, when the variation in the adiabatic
energy is dominant, and the low energy bands are well
described by a tight-binding model [2]. The minima of the
adiabatic potential form a square lattice, Fig. 1(b). Nearest-
neighbor hopping on this square lattice leads to a model in
which each plaquette encloses 1=2 a flux quantum. (Note
that the tight-binding lattice has four plaquettes per a� a
unit cell, for which N� ¼ 2.) The magnetic unit cell con-

tains two lattice sites, so there are two tight-binding bands.
The bands touch at two Dirac points [23], so one can speak
only of the Chern number of the two bands together. This
total Chern number is zero, consistent with the fact that this
nearest-neighbor tight-binding model is time-reversal

a

a
(a) (b)

FIG. 2 (color online). (a) Bloch vector and (b) flux density n�
for the lower energy dressed state of the triangular optical flux
lattice (8). The local minima of the adiabatic energy are at the
points where n� ¼ 0, forming a triangular lattice in the tight-

binding limit (dark circles and dashed lines).
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symmetric [24]. In the physical model, with mV=@2�2

large but finite, time-reversal symmetry is broken by next
nearest-neighbor hopping across diagonals of the square
lattice. This leads to closed loops around plaquettes which
contain 1=4 of a flux quantum. This perturbation acts to
split the bands at the two Dirac points, and the two bands
acquire Chern numbers of �1.

The band structure of the triangular optical flux lattice
(9) has the same qualitative properties, the lowest energy
band having a Chern number of 1. In this case, time-
reversal symmetry is broken even in the tight-binding limit
with nearest-neighbor hopping. The energy minima are at
the sites of a triangular lattice, Fig. 2(b), the elementary
plaquettes of which enclose 1=4 of a flux quantum. The
energy spectrum of the resulting tight-binding model,
shown for a convenient gauge in Fig. 3, has two narrow
bands that are well separated in energy and have Chern
numbers of �1.

Optical flux lattices will allow experiments on ultracold
gases to explore many very interesting phenomena. Since
they lead to a lowest energy band with a nonzero Chern
number, noninteracting fermions filling this band (with one
fermion per magnetic unit cell) will exhibit the integer
quantum Hall effect. Signatures of the resulting chiral
edge state could be observed in the collective modes,
which will rotate with a handedness determined by the
sign of the Chern number. The square lattice in the
nearest-neighbor tight-binding limit also offers the possi-
bility to study fermionic Dirac physics. Within mean-field
theory, interacting bosons loaded into the chiral band will
develop vortex lattices with very high flux density [25].
Owing to the very high flux density, it should be possible to
reach a regime where the 2D boson density is comparable
to the mean flux density, �n� � 1=�2, where strongly corre-

lated fractional quantum Hall states of bosons [5,10] or
related states on lattices [26] can appear. A leading candi-
date is the � ¼ 1=2 bosonic Laughlin state on the triangu-
lar lattice (9), for which the lowest energy chiral band is
narrow and well separated from higher bands. There is 1=2

a flux quantum per lattice site, so the Laughlin state
appears at 1=4 filling. It will be interesting also to explore
strong correlation phenomena in 3D settings, with an opti-
cal flux lattice providing net flux in one direction. Thus,
optical flux lattices will allow cold atom systems to be used
to study interesting phenomena related to the quantum Hall
effects. In contrast to electronic systems, these systems will
allow tuning of interparticle interactions and explorations
of bosonic variants and lattice effects.
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FIG. 3 (color online). Lowest energy bands for the triangular
flux lattice (9) in the nearest-neighbor tight-binding limit (for
uniform spacing of �2�=
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is relative to the atomic limit, in units of the nearest-neighbor
hopping. The bands have Chern numbers �1.
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