
Ab Initio Calculation of the Hoyle State

Evgeny Epelbaum,1 Hermann Krebs,1 Dean Lee,2 and Ulf-G. Meißner3,4

1Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44870 Bochum, Germany
2Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA

3Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics,
Universität Bonn, D-53115 Bonn, Germany

4Institut für Kernphysik, Institute for Advanced Simulation and Jülich Center for Hadron Physics,
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The Hoyle state plays a crucial role in the helium burning of stars heavier than our Sun and in the

production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus

was postulated by Hoyle as a necessary ingredient for the fusion of three alpha particles to produce carbon

at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago

nuclear theorists have not yet uncovered the nature of this state from first principles. In this Letter we

report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice

simulations and a theoretical framework known as effective field theory. In addition to the ground state

and excited spin-2 state, we find a resonance at �85ð3Þ MeV with all of the properties of the Hoyle state

and in agreement with the experimentally observed energy.
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In stars with central temperatures above 15� 106 K, the
carbon-nitrogen-oxygen cycle is the dominant process for
the conversion of hydrogen into helium [1,2]. However, a
key catalyst in this cycle is the carbon-12 nucleus which
itself must be produced by fusion of three helium-4 nuclei
or alpha particles. Without additional help this triple alpha
reaction is highly suppressed at stellar temperatures and
presents a bottleneck shutting down other process.
Fortunately, several coincidences prevent this from hap-
pening. The first stage fusing together two alpha particles is
enhanced by the beryllium-8 ground state, a resonance very
near the double alpha threshold. In order to enhance the
fusion of the third alpha particle, Hoyle postulated a new
excited state of 12C, a spinless even-parity resonance very
near the 8Be-alpha threshold [3]. Soon after this prediction,
the state was found at Caltech [4,5] and has been inves-
tigated in laboratories worldwide. Given its role in the
formation of life-essential elements, this state is commonly
mentioned in anthropic arguments explaining the fine-
tuning of fundamental parameters of the universe [6].

The Hoyle state presents a major challenge for nuclear
theory. There have been recent studies of carbon-12 and the
Hoyle state built from clusters of alpha particles [7–9].
While these empirical models provide qualitative insights,
investigations of the fundamental properties of the Hoyle
state require calculations from first principles. One very
interesting calculation is based on fermionic molecular
dynamics, but it requires a fit to properties of a broad range
of nuclei to pin down the various model parameters [9]. In
recent years several ab initio approaches have been used to
calculate the binding, structure, and reactions of atomic
nuclei. These include the no-core shell model [10,11],

constrained-path Green’s function Monte Carlo [12,13],
auxiliary-field diffusion Monte Carlo [14], and coupled
cluster methods [15]. Despite spectacular progress over
the past few years, there have been no calculations so far
which reproduce the Hoyle state from first principles.
In this Letter we report new ab initio calculations of the

low-lying spectrum of carbon-12 using the framework of
chiral effective field theory and Monte Carlo lattice simu-
lations. Effective field theory (EFT) is an organizational
tool which reconstructs the interactions of particles as a
systematic expansion in powers of particle momenta.
Initiated by Weinberg in 1991 [16], chiral EFT provides
a systematic hierarchy of the forces among protons and
neutrons. This approach comes with an estimate of the
theoretical uncertainty at any given order which can be
systematically reduced at higher orders. Over the past two
decades, chiral EFT has proven a reliable and precise tool
to describe the physics of few-nucleon systems. A recent
review can be found in Ref. [17]. The low-energy expan-
sion of EFT is organized in powers of Q, where Q denotes
the typical momentum of particles. The momentum scale
Q is also roughly the same size as the mass of the pion
times the speed of light. The most important contributions
come at leading order (LO) or OðQ0Þ. The next most
important terms are at next-to-leading order (NLO) or
OðQ2Þ. The terms just beyond this are next-to-next-to-
leading order (NNLO) or OðQ3Þ. In the lattice calculations
presented here, we consider all possible interactions up to
OðQ3Þ. We also separate out explicitly the OðQ2Þ terms
which arise from electromagnetic interactions (EM) and
isospin symmetry breaking (IB) due to mass differences of
the up and down quarks.
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Lattice effective field theory combines EFT with nu-
merical lattice methods in order to investigate larger sys-
tems. Space is discretized as a periodic cubic lattice with
spacing a and length L, where L is typically �10 fm. In
the time direction, the time step is denoted at with total
propagation time Lt. On this spacetime lattice, nucleons
are pointlike particles on lattice sites. Interactions due to
the exchange of pions and multinucleon operators are
generated using auxiliary fields. Lattice EFTwas originally
used to calculate the properties of homogeneous nuclear
and neutron matter [18,19]. Since then the ground state
energies of atomic nuclei with up to 12 nucleons have been
investigated [20,21]. A recent review of the literature can
be found in Ref. [22].

In the lattice calculations presented here we use the low-
energy filtering properties of Euclidean time propagation.
If H is the Hamiltonian operator for a quantum system,
then the eigenvalues of H are the energy levels and the
eigenvectors of H are the corresponding wave functions.
For any given quantum state, �, the projection amplitude
Z�ðtÞ is defined as the expectation value he�Hti�. For large
Euclidean time t, the exponential operator e�Ht enhances
the signal of low-energy states. The corresponding ener-
gies can be determined from the exponential decay of these
projection amplitudes.

In Table I we present lattice results for the ground state
energies of 4He, 8Be, and 12C. The method of calculation is
essentially the same as that described in Ref. [21]. We note
that higher-order corrections are computed using perturba-
tion theory. Some improvements have been made which
eliminate the problem of overbinding found in Ref. [21].
One significant improvement involves choosing local two-
derivative lattice operators at NLO which prevent interac-
tions tuned at low momenta from becoming too strong at
the cutoff momentum. Further details will be discussed in a
forthcoming publication. We show results at leading order
(LO), next-to-leading order (NLO), next-to-leading order
with isospin-breaking and electromagnetic corrections
(IBþ EM), and next-to-next-to-leading order (NNLO).
We follow the power counting scheme used in Ref. [21],
and there is no additional isospin-breaking and electromag-
netic corrections at NNLO. All energies are in units of
MeV. For comparison we also give the experimentally
observed energies. These calculations as well as all other

results presented here use lattice spacing a ¼ 1:97 fm and
time step at ¼ 1:32 fm. To simplify unit conversions we
are using units where @ and c, the speed of light, are set
equal to 1. The error bars in Table I are 1 standard deviation
estimates which include both Monte Carlo statistical errors
and uncertainties due to extrapolation at large Euclidean
time. For each simulation we have collected data from
2048 processors each generating about 300 independent
lattice configurations. In the case of 12C, these configura-
tions are stored on disk and used for the analysis of excited
states described later.
For 4He the periodic cube length is L ¼ 9:9 fm, while

the system size for the 8Be and 12C calculations are each
11.8 fm. By probing the two-nucleon spatial correlations
for each nucleus, we conclude that the finite size correc-
tions are smaller than the combined statistical and extrapo-
lation error bars. Since the lattice EFT calculations are
based upon an expansion in powers of momentum, the
size of corrections from OðQ0Þ to OðQ2Þ and from OðQ2Þ
to OðQ3Þ give an estimate of systematic errors due to
omitted terms at OðQ4Þ and higher. We have used the
experimentally observed 4He energy to set one of the
unknown three-nucleon interaction coefficients at NNLO
commonly known in the literature as cD. However, the
results for 8Be and 12C are predictions without free pa-
rameters, and the results at NNLO are in agreement with
experimental values.
In order to compute the low-lying excited states of

carbon-12, we generalize the Euclidean time projection
method to a multichannel calculation. We apply the ex-
ponential operator e�Ht to 24 single-nucleon standing
waves in the periodic cube. From these standing waves
we build initial states consisting of 6 protons and 6 neu-
trons each and extract four orthogonal energy levels with
the desired quantum properties. All four have even parity
and total momentum equal to zero. Three states have z-axis
component of angular momentum, Jz, equal to 0, and one
has Jz equal to 2. We note that the lattice discretization of
space and periodic boundaries reduce the full rotational
group to a cubic subgroup. As a consequence only 90�
rotations along axes are exact symmetries. This compli-
cates the identification of spin states. However the degen-
eracy or nondegeneracy of energy levels for Jz ¼ 0 and
Jz ¼ 2 allows one to distinguish between spinless states
and spin-2 states. We use the spectroscopic notation J�n ,
where J is the total spin, � denotes parity, and n labels the
excitation starting from 1 for the lowest level. In this
notation the ground state is 0þ1 , the Hoyle state is 0

þ
2 , and

the lowest spin-2 state is 2þ1 .
In Table II we show results for the low-lying excited

states of 12C at leading order (LO), next-to-leading order
(NLO), next-to-leading order with isospin-breaking and
electromagnetic corrections (IBþ EM), and next-to-next-
to-leading order (NNLO). All energies are in units of MeV.
For comparison we list the experimentally observed

TABLE I. Lattice results for the ground state energies for 4He,
8Be, and 12C. For comparison we also exhibit the experimentally
observed energies. All energies are in units of MeV.

4He 8Be 12C

LO [OðQ0Þ] �24:8ð2Þ �60:9ð7Þ �110ð2Þ
NLO [OðQ2Þ] �24:7ð2Þ �60ð2Þ �93ð3Þ
IBþ EM [OðQ2Þ] �23:8ð2Þ �55ð2Þ �85ð3Þ
NNLO [OðQ3Þ] �28:4ð3Þ �58ð2Þ �91ð3Þ
Experiment �28:30 �56:50 �92:16
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energies. As before the error bars in Table II are 1 standard
deviation estimates which include both Monte Carlo sta-
tistical errors and uncertainties due to extrapolation at large
Euclidean time. Systematic errors due to omitted higher-
order interactions can be estimated from the size of cor-
rections from OðQ0Þ to OðQ2Þ and from OðQ2Þ to OðQ3Þ.
In Fig. 1 we show lattice results used to extract the excited
state energies at leading order. For each excited state we
plot the logarithm of the ratio of the projection amplitudes,
ZðtÞ=Z0þ

1
ðtÞ, at leading order. Z0þ

1
ðtÞ is the ground state

projection amplitude, and the slope of the logarithmic
function at large t gives the energy difference between
the ground state and the excited state.

As seen in Table II and summarized in Fig. 2, the NNLO
results for the Hoyle state and spin-2 state are in agreement
with the experimental values. While the ground state and
spin-2 state have been calculated in other studies
[10,11,13], these results are the first ab initio calculations
of the Hoyle state with an energy close to the phenomeno-
logically important 8Be-alpha threshold. Experimentally
the 8Be-alpha threshold is at �84:80 MeV, and the lattice
determination at NNLO gives �86ð2Þ MeV. We also note

the energy level crossing involving the Hoyle state and the
spin-2 state. The Hoyle state is lower in energy at LO but
higher at NLO. One of the main characteristics of the NLO
interactions is to increase the repulsion between nucleons
at short distances. This has the effect of decreasing the
binding strength of the spinless states relative to higher-
spin states. We note the 17 MeV reduction in the ground
state binding energy and 12 MeV reduction for the Hoyle
state while less than half as much binding correction for the
spin-2 state. This degree of freedom in the energy spectrum
suggests that at least some fine-tuning of parameters is
needed to set the Hoyle state energy near the 8Be-alpha
threshold. It would be very interesting to understand which
fundamental parameters in nature control this fine-tuning.
At the most fundamental level there are only a few such
parameters, one of the most interesting being the masses of
the up and down quarks [23,24].
Our comments on the binding energies at LO would also

suggest that the nuclear wavefunctions at LO are probably
somewhat too compact for the spinless states. We check for
this explicitly by computing the proton-proton radial dis-
tribution function fppðrÞ. Using any given proton as a

reference point, the function fppðrÞ is proportional to the

probability of finding a second proton at a distance r. For
macroscopic liquids the radial distribution function is nor-
malized to 1 at asymptotically large distances. In our finite
system we instead normalize the integral of fppðrÞ over all
space to equal 1� Z�1, where Z is the total number of
protons. In Fig. 3 we show the radial distribution function
fppðrÞ at Euclidean time t ¼ 0:08 MeV�1 for the ground

state (A), Hoyle state (B), and the Jz ¼ 0 (C) and Jz ¼ 2
(D) projections of the spin-2 state. The yellow bands
denote 1 standard deviation error bars.

TABLE II. Lattice results for the low-lying excited states of
12C. For comparison the experimentally observed energies are
shown. All energies are in units of MeV.

0þ2 2þ1 , Jz ¼ 0 2þ1 , Jz ¼ 2

LO [OðQ0Þ] �94ð2Þ �92ð2Þ �89ð2Þ
NLO [OðQ2Þ] �82ð3Þ �87ð3Þ �85ð3Þ
IBþ EM [OðQ2Þ] �74ð3Þ �80ð3Þ �78ð3Þ
NNLO [OðQ3Þ] �85ð3Þ �88ð3Þ �90ð4Þ
Experiment �84:51 �87:72
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FIG. 1 (color online). Extraction of the excited states of 12C
from the time dependence of the projection amplitude at LO. The
slope of the logarithm of ZðtÞ=Z0þ
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ðtÞ at large t determines the
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FIG. 2 (color online). Summary of lattice results for the
carbon-12 spectrum and comparison with the experimental val-
ues. For each order in chiral EFT labeled on the left, results are
shown for the ground state (blue circles), Hoyle state (red
squares), and the Jz ¼ 0 (open black circles) and Jz ¼ 2 (filled
black circles) projections of the spin-2 state.
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The ground state is very compact with a large central
core. The Hoyle state and spin-2 state look qualitatively
similar, though the Hoyle state has a slightly larger central
core. A secondary maximum near r ’ 4 fm is visible in the
ground state and each of the excited states. This secondary
maximum seems to arise from configurations where three
alpha clusters are arranged approximately linearly. More
calculations are planned to confirm whether this configu-
ration is physically important or just a lattice artifact.

It is straightforward to compute the root-mean-square
charge radius from the second moment of fppðrÞ. We

include the charge radius of the proton, 0.84 fm [25], by
adding it in quadrature. At LO we obtain a charge radius of
2.04(2) fm for the ground state, 2.4(1) fm for the Hoyle
state, and 2.6(1) fm and 2.4(2) fm for Jz ¼ 0 and Jz ¼ 2
projections of the spin-2 state. The experimentally ob-
served charge radius for the ground state is 2.47(2) fm
[26]. As expected the ground state wave function at LO
is too small by a proportion similar to the overbinding in
energy. The radius for the ground state and Hoyle state
should increase significantly when the NLO corrections are
included. One expects some correction due to the finite-
volume periodic boundary. At LO the tail of the radial
distribution function suggests that this is a rather small
effect for L ¼ 11:8 fm. Higher-order corrections to the
radial distribution function, charge radii, as well as elec-
tromagnetic transition strengths are currently under inves-
tigation and will be discussed in a future publication.

In summary we have presented ab initio calculations of
the low-lying states of carbon-12 using lattice effective
field theory. In addition to the ground state and excited
spin-2 state, we find a resonance with spin zero and posi-
tive parity at �85ð3Þ MeV which appears to be the Hoyle
state. Much more work is needed and planned, including
calculations at smaller lattice spacings. But these lattice

calculations provide a new opening towards understanding
the physics of this unique state and may also prove useful
for the study of other nuclear reactions relevant to the
element synthesis in stars.
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[1] C. F. von Weizsäcker, Phys. Z. 39, 633 (1938).
[2] H. A. Bethe, Phys. Rev. 55, 434 (1939).
[3] F. Hoyle, Astrophys. J. Suppl. Ser. 1, 121 (1954).
[4] D. N. F. Dunbar, R. E. Pixley, W.A. Wenzel, and W.

Whaling, Phys. Rev. 92, 649 (1953).
[5] C.W. Cook et al., Phys. Rev. 107, 508 (1957).
[6] H. Kragh, Arch. Hist. Exact Sci. 64, 721 (2010).
[7] P. Descouvemont, J. Phys. G 35, 014006 (2008).
[8] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Phys.
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