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Recent experiments have observed bulk superconductivity in doped topological insulators. Here we ask

whether vortex Majorana zero modes, previously predicted to occur when s-wave superconductivity is

induced on the surface of topological insulators, survive in these doped systems with metallic normal states.

Assuming inversion symmetry, we find that they do but only below a critical doping. The critical doping is

tied to a topological phase transition of the vortex line, at which it supports gapless excitations along its

length. The critical point depends only on the vortex orientation and a suitably defined SU(2) Berry phase

of the normal state Fermi surface. By calculating this phase for available band structures we determine

that superconducting p-doped Bi2Te3, among others, supports vortex end Majorana modes. Surprisingly,

superconductors derived from topologically trivial band structures can support Majorana modes too.

DOI: 10.1103/PhysRevLett.107.097001 PACS numbers: 74.25.Uv, 74.25.Dw

Majorana fermions, defined as fermions that are their
own antiparticles unlike conventional Dirac fermions such
as electrons, have long been sought by high energy phys-
icists, but so far in vain. Of late, the search for Majorana
fermions has remarkably shifted to condensed matter sys-
tems [1–3], especially, to superconductors (SCs), where
states appear in conjugate pairs with equal and opposite
energies. Then, a single state at zero energy is its own
conjugate and hence, a Majorana state or a Majorana zero
mode (MZM). These states are immune to local noise and
hence, considered strong candidates for storing quantum
information and performing fault tolerant quantum com-
putation [4]. Moreover, they show non-Abelian rather than
Bose or Fermi statistics which leads to a number of ex-
traordinary phenomenon [5].

Despite many proposals direct experimental evidence
for a MZM is still lacking. While initial proposals involved
the � ¼ 5=2 quantum Hall state and SCs with unconven-
tional pairing such as px þ ipy [3], a recent breakthrough

occurred with the discovery of topological insulators (TIs)
[6], which feature topologically protected metallic surface
bands. When a conventional s-wave SC is brought near this
metallic surface, a single MZM is trapped in the vortex
core [7]. Since then, several TIs were found to exhibit bulk
superconductivity on doping [8] or under pressure [9,10].
The normal phase of these SCs is now metallic, which
raises the question: can a SC vortex host a surface MZM
even when the bulk is not insulating?

In this Letter, we answer this question in the affirmative
and in the process, discover a convenient way to obtain a
MZM, which allows us to conclude that some existing
experimental systems should possess these states. Our
proposal involves simply passing a magnetic field through
a TI-based SC, such as superconducting Bi2Te3, in which
the doping is below a certain threshold value. We also find

general criteria for SCs to host vortex MZMs and show that
some non-TI-based SCs satisfy them too.
A heuristic rule often applied to answer the above ques-

tion is to examine whether the normal state bulk Fermi
surface (FS) is well separated from surface states in the
Brillouin zone. If it is, MZMs are assumed to persist in the
bulk SC. While this may indicate the presence of low
energy states, it is not a topological criterion since it
depends on nonuniversal details of surface band structure,
and cannot signal the presence of true MZMs. For MZMs
to disappear, a gapless channel must open that allows pairs
to approach each other and annihilate. We therefore search
for and offer a bulk rather than a surface criterion. In this
process, we have uncovered the following interesting facts.
We assume inversion (I) and time reversal (T ) symmetric
band structures, and weak pairing, since these lead to a
technical simplification and capture many real systems.
(i) The appearance of surface MZMs is tied to the topo-
logical state of the vortex, viewed as a 1D topological SC.
The critical point at which they disappear is linked to a
vortex phase transition (VPT) where this topology
changes. If verified, this may be the first instance of a
phase transition inside a topological defect. (ii) The topo-
logical state of a vortex depends in general on its orienta-
tion. (iii) Symmetry dictates that the normal state FS is
doubly degenerate, leading to an SU(2) non-Abelian Berry
phase [11] for closed curves, which determines the condi-
tion for quantum criticality of the vortex. This is a rare
example of a non-Abelian Berry phase directly influencing
measurable physical properties of an electronic system.
Spin-orbit coupling is essential to obtaining the SU(2)
Berry Phase. (iv) Using this criterion and available
band structures we find that MZMs occur in p-doped
superconducting Bi2Te3 [10] and in Cu-doped Bi2Se3 [8]
if the vortex is sufficiently tilted off the c axis. c-axis
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vortices in Cu-doped Bi2Se3 are predicted to be near the
topological transition.

The problem.—Consider a 3D insulating band structure
H, which we dope by changing the chemical potential �
away from the middle of the band gap. Now, add conven-
tional s-wave even parity pairing � (in contrast to the odd
parity pairing of Ref. [12]) and introduce a single vortex
line into the pairing function �ðrÞ, stretching between the
top and bottom surfaces. We neglect the effect of the
magnetic field used to generate the vortices, assuming
extreme type II limit. When H is a strong TI, and � is in
the band gap, the pair potential primarily induces super-
conductivity on the surface states. In this limit it is known
[7] that MZMs appear on the surface, in the vortex core
[13]. Now consider tuning � deep into the bulk bands. By
modifying states well below �, one could tune the band
structure to one with uninverted bands. One now expects
‘‘normal’’ behavior, and the absence of MZMs. Therefore,
a quantum phase transition must occur between these
limits at � ¼ �c.

To understand the nature of the transition, we recall
some basic facts of vortex electronic structure, which are
also derived below. Once � enters the bulk bands, low
energy Caroli–de Gennes–Matricon excitations appear,
bound to the vortex line [14]. These excitations are still
typically gapped, although by a small energy scale, the
‘‘minigap’’: �� �=ðkF�Þ (where kF is the Fermi wave
vector and � is the coherence length. In the weak pairing
limit kF� � 1). This small energy scale arises because the
gap vanishes in the vortex core leading to a droplet of
normal fluid, which is eventually gapped by the finite
vortex size. However, the presence of the minigap is im-
portant, since it blocks the tunneling of the surface MZMs
into the vortex line, and confines them near the surface.
The closing of the minigap allows the surface MZMs to
tunnel along the vortex line and annihilate each other.

Vortex as a 1D topological SC.—The VPTmay be viewed
as a change in the topology of the electronic structure of the
vortex line. The relevant energy scale is of the order of the
minigap � � �, with excitations localized within the 1D
vortex core. The vortex admits particle-hole symmetry (C)
but breaksT symmetry and hence, belongs to classD of the
Altland-Zirnbauer classification [15]. Thus, the problem
reduces to classifying gapped phases in 1D within the
symmetry class D, which are known to be distinguished
by a Z2 topological invariant [1]. The two kinds of phases
differ in whether they support MZMs at their ends. The
topologically nontrivial phase does and hence corresponds
to the �<�c phase of the vortex line. On raising �, the
vortex line transitions into the trivial phase, via a quantum
critical point at which it is gapless along its length. This is
reminiscent of recent proposals to generate MZMs at the
ends of superconducting quantum wires [16]. Note, since
there is no ‘‘local’’ gap in the vortex core, the powerful
defect topology classification of [17] cannot be applied.

The Hamiltonian.—The Hamiltonian is H ¼
1
2

P
k�

y
kH

BdG
k �k where �y

k ¼ ðcyk"; cyk#; c�k#;�c�k"Þ
and cyk� is assumed to have a ¼ 1 . . .N orbital components

cyk�a and

H BdG
k ¼ Hk �� �

�� ��Hk

" #
; (1)

where scalars such as� and �multiply the identity matrix
12N�2N . The band Hamiltonian Hk is a 2N � 2N matrix
with T symmetry: �yH

��k�y ¼ Hk, where �y acts on the

spin, which yields the Hamiltonian structure above. When
I symmetry is also present, Hk will be doubly degenerate,
since the combined operation T I leads to a Kramers pair
at every momentum. H BdG

k has particle-hole symmetry

implemented by the transformation C ¼ �y�yK, where

� matrices act on Nambu particle-hole indices, and K
denotes complex conjugation. A vortex given by �ðrÞ ¼
j�ðrÞje�i�, breaks T but preserves C.
Role of vortex orientation.—Consider a straight vortex

along ẑ. The dispersion EðkzÞ in general, has a minigap � as
in Fig. 1. A topological phase transition requires closing of
the minigap and reopening with inverted sign. Since the Z2

topological index is only changed by an odd number of
such band crossings, the only relevant momenta are
kz ¼ 0, �. Band touchings at other kz points occur in pairs
at �kz which do not alter the Z2 index [1]. In the weak
pairing limit, one expects the critical point �c to be deter-
mined by a FS property, which will be outlined in detail
below. Here we simply observe that the relevant FSs to
consider lie in the kz ¼ 0, � planes, the planes determined
by the vortex orientation. This implies that the topological
phase of the vortex, and hence �c, depend in general on its
orientation.
VPT in a lattice model.—Before discussing the general

criterion for a VPT, we present numerical and analytical
evidence in a specific lattice model from Ref. [18]. While
the numerics explicitly demonstrate the phase transition,
the analytical treatment of the continuum limit allows us to
conjecture a Berry phase condition for the transition, which
is later proved. The model is on a simple cubic lattice
with two orbitals per site: Hlatt

k ¼ �xdk � �þmk�z ��
where �i (�i) are Pauli matrices in the orbital (spin) basis,
dik ¼ 2t sinki, mk ¼ ðMþm0

P
i coskiÞ, i ¼ x, y, z, and t,

m0, and M are parameters of the model and � is the
chemical potential. The model is in the strong TI phase if
�3< M

m0
<�1. We add a mean field s-wave pairing to this

Hamiltonian, insert a unit winding into the pairing func-
tion, and diagonalize the Hamiltonian numerically. We
focus on kz ¼ 0.
Numerical results.—Figure 1 illustrates the evolution of

the bulk vortex bound states, the dispersion within the
vortex, and the surface MZMs as a function of �, when
the normal state has a band inversion only at the
� ¼ ð0; 0; 0Þ point, i.e., m� < 0. At � ¼ 0, the bulk is
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gapped and must have a pair of MZMs on opposite surfaces
in a slab geometry. As� is raised, these MZMs leak deeper
into the bulk, but survive even after � crosses jm�j despite
the bulk now having a FS in the normal phase, gapped by
superconductivity. AVPTeventually occurs at�c ¼ 0:9, at
which the vortex is gapless and the surface MZMs merge
into vortex line. Beyond �c, there are no longer any
protected MZMs on the surface.

Continuum limit.—In the continuum limit of the lattice
model, we can analytically calculate �c. For kz ¼ 0 and
small kx;y around �, Hlatt

k reduces to the isotropic form

H k ¼ vD�x� � kþ ðm� 	k2Þ�z ��. In this form, a
band inversion exists if m	 > 0. Thus, m	 < 0 (> 0)

defines a trivial insulator (strong TI). At k ¼ ffiffiffiffiffiffiffiffiffiffi
m=	

p
, mk ¼

m� 	k2 vanishes and H k resembles two copies of
a TI surface. In particular, the Berry phase around each

�x ¼ �1 FS is �. We show later that this leads to a pair of

vortex zero modes, signaling the VPT at �c ¼ vD

ffiffiffiffiffiffiffiffiffiffi
m=	

p
.

We solve analytically for the two bulk zero modes at �
to first order in �0 assuming j�ðrÞj ¼ �0�ðr� RÞ, where
� is the step function and �R=vD � 1. Calculating the
zero modes separately for r 	 R and r 
 R and matching
the solutions at r ¼ R gives a pair of zero modes, only

when � ¼ vD

ffiffiffiffiffiffiffiffiffiffi
m=	

p
, for all vortex orientations. This is

precisely where the momentum dependent ‘‘mass’’ term
changes sign [19]. Using the model parameters and the
linearized approximation gives an estimate of �c � 1, in
agreement with the lattice numerics.
General Fermi surface Berry phase condition.—For

weak pairing, the VPT is expected to be governed by
properties of the bulk FS. For concreteness, we begin by
assuming we have a single FS in the kz ¼ 0 plane, which
will be doubly degenerate due to the combined symmetry
T I . We now argue that the VPT occurs when an appro-
priately defined Berry phase for each of the two degenerate
bulk FSs is �.

A convenient model for the vortex is �ðrÞ ¼ �0

� ðx� iyÞ.
The linear profile here simplifies calculations, but does not
affect the location of the zero mode. The choice of � as the
length scale gives the right minigap scale for the low
energy excitations. Working in momentum space, we sub-
stitute r by i@k, which gives

H BdG
k ¼

Hk �� i �0

� ð@kx � i@kyÞ
i �0

� ð@kx þ i@kyÞ ��Hk

2
4

3
5; (2)

transforming now to the band basis j’�
ki, which are eigen-

states of the band Hamiltonian Hkj’ki ¼ Ekj’ki. Since
we are only interested in very low energy phenomena, we
project onto the two degenerate bands near the Fermi
energy � ¼ 1, 2. The projected Hamiltonian then is

~H BdG
k ¼

Ek �� i �0

� ðDkx � iDkyÞ
i �0

� ðDkx þ iDkyÞ �Ek þ�

2
4

3
5; (3)

whereDk
 ¼ @k
 � iA
ðkÞ andA
ðkÞ, the SU(2) connec-
tions, are 2� 2 matrices: ½A���


 ðkÞ ¼ ih’�
k j@k
 j’�

ki.
(i) Abelian case.—Let us first consider the case when an

additional quantum number (such as spin) can be used to
label the degenerate FSs. Then, ½A���


 must be diagonal,
and reduces to a pair of U(1) connections for the two FSs.
In this situation, (3) is identical to the effective
Hamiltonian for a px þ ipy SC, if we interpret momenta

as position and ignore the gauge potential. The diagonal
terms represent a transition from weak to strong pairing
phase on crossing the FS when Ek ¼ � [3]. Thus midgap
states are expected, composed of states near the Fermi
energy. Because of the finite size of the FS, these states

have an energy spacing of Oð �0

kF�
Þ, the minigap energy

scale. However, a zero energy state appears if the FS
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FIG. 1 (color online). The vortex phase transition. Evolution of
the lowest few states at kz ¼ 0 (top row), of the dispersion within
the vortex (middle row) and of the surface MZMs (bottom row)
as � is varied when the normal phase has a band inversion at �.
At � ¼ 0, the normal phase is a strong TI and a superconducting
vortex traps a MZM at its ends. As � is increased, it first enters
the conduction band at � ¼ jm�j and midgap states appear
inside the vortex. For �<�c, the vortex stays gapped, but
with a minigap � smaller than the bulk gap. The MZMs remain
trapped near the surface. At�c ¼ 0:9, the gap vanishes signaling
a phase transition. Beyond �c, the vortex is gapped again, but
there are no surface MZMs. We used the lattice Hamiltonian
with the parameters t ¼ 0:5, M ¼ 2:5, and m0 ¼ �1:0.
The pairing strength is �0 ¼ 0:1 far away from the vortex and
drops sharply to zero at the core. Other gap profiles give similar
results.
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encloses a � flux [3]. This can be implemented via the
gauge potential if

H
FS A � dl ¼ � leading to a pair of zero

modes, since the other FS has the same Berry phase by T .
(ii) General case, SUð2Þ connection.—In the absence of

any quantum number distinguishing the bands, one inte-
grates the vector potential AðkÞ around the FS in the
kz ¼ 0 plane, to obtain the non-Abelian Berry phase UB ¼
P exp½iHFS A � dl� 2 SUð2Þ, where P denotes path order-

ing. [There is no U(1) phase by T symmetry.] Although
UB itself depends on the choice of basis, its eigenvalues
e�i�B are gauge invariant. A semiclassical analysis [19]
gives the Bohr-Sommerfield type quantization condition
for the low energy levels:

En ¼ �0

lF�
ð2�nþ ���BÞ; (4)

where n is an integer and lF is the FS perimeter. A pair of
zero modes appears when �B ¼ �, i.e., when UB ¼ �1.

We have considered a single closed FS in the kz ¼ 0
plane. Such a FS necessarily encloses a T invariant mo-
mentum (TRIM), (e.g., �), given the symmetries. When
there are multiple FSs, the condition above is applied
individually to each FS, since tunneling between them is
neglected in the semiclassical approximation. Closed FSs
that do not enclose a TRIM, or pairs of open FSs, cannot
change the vortex topology.

Candidate materials.—We now apply the Berry phase
criterion to some candidate materials to see which of them
can have protected MZMs at the ends of vortices.

CuxBi2Se3.—The insulating phase of Bi2Se3 is a strong
TI with a single band inversion occurring at the � point. On
Cu doping, Bi2Se3 becomes n type with an electron pocket
at � and is reported to superconduct below Tc ¼ 3:8 K
[8,20]. Photoemission measurements show � � 0:25 eV
above the conduction band minimum at optimal doping
[21]. We calculate the Berry phase eigenvalues for a FS
around the � point numerically as a function of �, which
evaluates to �� at �c � 0:24 eV above the conduction
band minimum for a vortex along the c axis of the crystal
[19]. Hence � * �c indicates c-axis vortices are near the
topological transition. However, tilting the vortex away
from the c axis is found to raise �c to up to �c ¼
0:30 eV, for a vortex perpendicular to the c axis.
Therefore, sufficiently tilted vortices should host MZMs
at the experimental doping level.

p-doped TlBiTe2, p-doped Bi2Te3 under pressure and
PdxBi2Te3.—The bands of TlBiTe2 and Bi2Te3 are topo-
logically nontrivial because of a band inversion at the �
point [22]. The topological character of Bi2Te3 is believed
to be preserved under a pressure of up to 6.3 GPa, at which
it undergoes a structural phase transition. On p doping to a
density of 6� 1020 cm�3 (3–6� 1018 cm�3), TlBiTe2
(Bi2Te3 under 3.1 GPa) becomes a SC below Tc ¼
0:14 K (�3 K) [10,23], making it a natural system to
search for the possibility of MZMs. Similarly, n-doping

Bi2Te3 to a concentration of 9� 1018 cm�3 by adding Pd
reportedly results in Tc ¼ 5:5 K [8] in a small sample
fraction. The superconductivity in Bi2Te3 under pressure,
and in TlBiTe2 (PdxBi2Te3) is believed to arise from six
symmetry related hole (electron) pockets around the �-T
line. This is an even number so vortex lines in supercon-
ducting TlBiTe2 and both p- and n-type Bi2Te3 should
have MZMs at their ends in all orientations.
MZMs from trivial insulators.— The bulk criterion de-

rived does not require a ‘‘parent’’ topological band struc-
ture. As a thought example, say we have four TRIMs with
Hamiltonians like the continuum HamiltonianH k in their
vicinity. Such band inversions at four TRIMs in a plane
leads to a trivial insulator [24]. However, if their critical
chemical potentials �c differ, then there could be a range
of � where there are an odd number of VPTs below and
above �, leading to topologically nontrivial vortices.
Interestingly PbTe and SnTe are both trivial insulators
with band inversions relative to each other at the four
equivalent L points. They both exhibit superconductivity
on doping below Tc ¼ 1:5 K [25] and 0.2 K [26], respec-
tively. A combination of strain (to break the equivalence of
the four L points) and doping could potentially create the
scenario described above in one of these systems. GeTe is
similar to SnTe with Tc � 0:3 K [27] but undergoes a
spontaneous rhombohedral distortion resulting in the de-
sired symmetry. Thus, I- and T -symmetric systems with
strong spin orbit can lead to SCs with vortex end MZMs,
even in the absence of a proximate topological phase.
Investigating the Fermi surface SU(2) Berry phases, and
thus the vortex electronic structure, in this wide class of
systems is a promising future direction in the hunt for
Majorana fermions.
In closing, we note that the VPT could potentially be

probed via thermal transport along the vortex line. A hurdle
is the small minigap scale (�=kF�� �2=EF), and the long
confinement length of theMZMs to the surface, which may
be ameliorated by considering strong coupling SCs or
materials such as heavy fermions where EF is reduced.
We thank A.M. Turner, J. H. Bardarson, A. Wray, and

C. L. Kane for insightful discussions, and NSF-DMR
0645691 for funding. In parallel work, L. Fu, J. C. Y. Teo,
and C. L. Kane have arrived at similar conclusions.
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