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By using the technique of electrostatic levitation, the Ni self-diffusion, density, and viscosity of liquid

Zr64Ni36 have been measured in situ with high precision and accuracy. The inverse of the viscosity, �,

measured via the oscillating drop technique, and the self-diffusion coefficient D, obtained from

quasielastic neutron scattering experiments, exhibit the same temperature dependence over 1.5 orders

of magnitude and in a broad temperature range spanning more than 800 K. It was found that D� ¼ const

for the entire temperature range, contradicting the Stokes-Einstein relation.
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The dynamics in fluids is governed by two intimately
related properties: viscosity and atomic diffusion. While
the first describes the macroscopic transport of momentum
by the collective motion of the particles, the latter de-
scribes single-particle diffusive transport. A common rela-
tion, which is often taken for granted in order to calculate
the required diffusion coefficients of atoms or molecules in
a liquid from the viscosity, or vice versa, is the Stokes-
Einstein relation [1]:

D� ¼ kBT

6�rH
: (1)

In Eq. (1), � is the viscosity of the solvent, D is the
diffusion coefficient, rH is its hydrodynamic radius, T is
the absolute temperature, and kB ¼ 1:38� 10�23 J=K is
the Boltzmann constant. The Stokes-Einstein relation was
derived in order to study the diffusive motion of a meso-
scopic sphere in a viscous medium [2]. However, when the
diffusing objects are of atomistic size, deviations of D and
� from the Stokes-Einstein behavior can be observed.

For instance, molecular dynamics simulations, per-
formed on liquid Al80Ni20, show that Eq. (1) works
as a good approximation when T is extremely large (T �
1800 K) and becomes increasingly inaccurate upon low-
ering T below this temperature [3]. The same is indicated
for ZrCu2 [4], various Lennard-Jones [5–7] and hard-
sphere systems [8], water [9], and silica [10]. For the latter
system, � and D deviate from Eq. (1) over the entire
investigated temperature range.

Experimental indications for a deviation from Eq. (1)
exist for some liquid metals [11,12] and for molecular
glass-forming liquids [13].

On a large scale, however, Eq. (1) is at least a good
approximation: For instance, in the case of PdNiCuP [14],
Pd self-diffusion and viscosity have been measured over a
temperature range from 600 to 1200 K. Both properties
vary by 10 orders of magnitude. Equation (1) worked
within a factor of 2.

From an experimental point of view, a direct proof of
Eq. (1) is still very difficult due to the lack of reliable
experimental data, especially of the transport coefficients
D and �. The accurate measurement of diffusion data,
using long capillary methods, is subject to large errors
due to additional transport of mass by buoyancy-driven
flow effects [15,16]. Pollution of the sample from chemical
reactions with the container walls complicates the mea-
surement of both properties. In order to check Eq. (1),
measurements need to be carried out over a sufficiently
large temperature range in which T changes by a factor of
1.5–2. This includes high temperatures favoring convec-
tion and chemical reactivity.
With the development of advanced containerless pro-

cessing techniques, such as electrostatic levitation (ESL),
we are now in a position to master these challenges.
Using ESL, we recently carried out quasielastic neutron

scattering experiments and determined accurate Ni self-
diffusion coefficients DNi in liquid Zr64Ni36. These data
were measured over a broad temperature range from 1100
to 1700 K [17]. The viscosity and density of liquid Zr64Ni36
were also measured over a broad temperature range: T
varied by a factor of 1.5, whereas the viscosity varied by
1.5 orders of magnitude. With these results for a dense
glass-forming system, we can now check the relation of
viscous flow and diffusion of mass in unequaled detail.
Previous density and viscosity data of Zr64Ni36 have

been published by Ohsaka, Chung, and Rhim [18]. In
contrast to these works, our own electrostatic levitator is
equipped with a more advanced sample-positioning system
as well as a sophisticated optical setup, using a high-speed
camera. The use of the latter is new for the measurement of
the viscosity in electrostatic levitation. It allows us to
determine the droplet radii with a high precision, thus
increasing the overall accuracy of the data.
Experiments in ESL are carried out under� 10�8 mbar.

The electrically charged samples have typical diameters
between 1.5 and 3 mm and masses of 20–90 mg. A sample
is levitated in the static electric field between two parallel
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disklike electrodes 15 mm apart from each other.
Horizontal stabilization is accomplished by four lateral
electrodes underneath the sample. Position control is
achieved from a feedback loop consisting of two expanded
He=Ne lasers arranged perpendicular to each other and
associated x- and y-position sensitive detectors.

Heating and melting of the specimen are achieved by
two 25 W IR lasers. Temperature gradients, eventually
generated this way, are so small that they can be neglected
[17]. Temperature is measured by a pyrometer directed at
the specimen from the side. As the effective emissivity is
generally not known, it has to be calculated from the
known liquidus temperature under the reasonable assump-
tion that it is constant over the entire investigated tempera-
ture range. The liquidus temperature TL ¼ 1283 K is used
from the phase diagram [19]. In all experiments, the ob-
served mass losses were lower than 0.1% of the original
mass. Density is measured by illuminating the sample from
one side by a cold light source and recording shadow
images by means of a digital complementary metal-
oxide-semiconductor camera with a resolution of
480� 500 pixel and a frame rate of 2000 Hz. The images
are analyzed, and the sample volume V is calculated from
the edge curves. The density is obtained with a precision of
better than ��=� < 0:5%. The duration of a complete
measurement cycle was approximately 10 s.

The viscosity is measured by using the same optical
setup. A sinusoidal electric field with an amplitude of
0.4–2 kV is superimposed onto the vertical electrodes
with a frequency between 100 and 400 Hz. When the
excited P2;0 mode has stabilized with an amplitude of 4%

of the quiescent droplet radius R0, the sinusoidal field is
switched off and the sample oscillates freely. During the
decay of the oscillation, shadow graphs of the sample are
recorded.

The use of a high-speed camera allows us to collect
10–20 data points per oscillation and to determine the
vertical radius RzðtÞ as a function of time twith a precision
of better than 1%. For the viscosity measurement, the
duration of an experimental run was roughly 15 min.
Figure 1 shows RzðtÞ for a measurement at 1182 K. For
further analysis, RzðtÞ is fitted by a damped sine function:
RzðtÞ ¼ R0 þ A expð� t

�0
Þ sinð!tþ �0Þ, where A is the am-

plitude, �0 is the decay time constant, ! is the frequency,
and �0 is the constant phase shift. From the obtained value
of �0, the viscosity is calculated according to Lamb’s
law [20]:

� ¼ �R2
0

5�0
: (2)

Density data were obtained over a broad temperature
range. An undercooling of nearly 180 K is achieved. The
scatter of the data is smaller than 0.1%, and the agreement
among different experimental runs, as well as with
Ref. [18], is within �0:15%.

The density can be expressed by a linear law with �L ¼
6:878� 0:003 g � cm�3 being the density at liquidus tem-
perature TL and �T ¼ �3:73� 0:01� 10�4 g � cm�3 K�1

the temperature coefficient. �L corresponds to a mean

particle density of �̂ ¼ 0:052 at= �A3. By using the covalent

radii of Zr and Ni, rZr ¼ 1:45 �A and rNi ¼ 1:15 �A [21],
respectively, a value of 0:55� 0:002 is obtained for the
effective volume packing fraction: ’ ¼ 4�

3 �
ð0:36rNi3 þ 0:64rZr

3Þ�̂. This value is in line with ’ from

multicomponent bulk glass-forming alloys [12]. As for
comparison, the packing fraction of liquid Al is � 0:48.
Hence, Zr64Ni36 is a rather densely packed system, and
glassy behavior should be favored already at this stage.
Results of the viscosity measurement are shown in Fig. 2

as a function of temperature. Values were obtained in the
broad temperature range of 1050–1750 K. Large under-
coolings of up to 230 K were achieved. Generally, the
viscosity increases when the temperature is lowered. At
TL, the viscosity is 11:5 mPa � s. It reaches a value of
approximately 130 mPa � s for T � 1100 K which is large
compared to most non-glass-forming metallic alloys, [22].
For T > TL, � assumes values between 11:5 and 8 mPa � s.
In Fig. 2, the data are shown together with the viscosities

of Ohsaka, Chung, and Rhim [18]. For T < TL, there is an
agreement within�5% corresponding to the scatter of our
data. For T > TL, however, the two curves significantly
deviate from each other. This deviation increases with an
increase of temperature. At 1500 K, the viscosity reported
by Ohsaka, Chung, and Rhim [18] is about 30% smaller.
In order to exclude that this discrepancy is caused by a

systematic error in our data, due to some nonlinear effect in
the surface oscillation, the experiment was performed with
five samples having masses of 20.8, 27.0, 38.2, 41.0, and
86.2 mg. Such a nonlinear effect could originate, for in-
stance, from an excitation of flow vortices in the bulk of the
droplet when the oscillation amplitude is too large [23].
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FIG. 1. Vertical radius Rz versus time t measured at 1182 K
during the decay of the oscillation (symbols). The solid line is a
fit of a damped sine law.
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Recently, Ishikawa et al. argued [24] that there is an
interference of the surface oscillation by the positioning
controller which would also lead to an apparently in-
creased viscosity. In case such a nonlinear effect existed
in the droplet oscillation, using samples with different
masses would result in apparently different values of the
viscosity. As shown in Fig. 2, however, the same curve
�ðTÞ is obtained for each sample mass within the above
mentioned�5% scatter. Systematic errors due to nonlinear
droplet oscillations can, hence, be excluded.

Our data can well be described by the phenomenological
Vogel-Fulcher-Tammann (VFT) law, which is typical for
many glass-forming systems [25]:

� ¼ �0 exp

�
E�

kBðT � T0Þ
�
: (3)

In this equation, the constant E� corresponds to an activa-

tion energy for viscous flow, T0 describes a temperature
associated with the glass transition, and �0 is a scaling
factor. Equation (3) reproduces the measured data with
parameters obtained from the fit as E� ¼ 2:75� 10�20 J,

T0 ¼ 660:5 K, and �0 ¼ 1:1 m � Pa � s; see Fig. 2.
Our Ni self-diffusion coefficients DNi are plotted semi-

logarithmically in Fig. 3 against the inverse temperature.
The uncertainty of DNi is of the order of �5% only, and
values range from 2:3� 10�9 m2 s�1 at T � 1650 K to
2:3� 10�10 m2 s�1 at � 1116 K, corresponding to an
undercooling of 167 K. At liquidus temperature TL ¼
1283 K, DNi ¼ 7:8� 10�10 m2 s�1.
AVFT law, similar to Eq. (3), can be fitted to these data

as well. Apart from the scaling factor, absolute values
obtained for the activation energy ED ¼ �2:64�
10�20 J and for the temperature T0 ¼ 674 K are identical
within error bars to the corresponding values obtained from
the viscosity data. Moreover, ED � �E�. Hence, both the

inverse of the viscosity, i.e., ��1, and the self-diffusion
coefficient are proportional to each other. This is shown in
Fig. 4, where the measured viscosity data are multiplied
by the VFT fit of DNi: The product DNi� equals
1:8ð�0:25Þ � 10�11 J=m over the entire temperature range
of 1050 K � T � 1750 K.
For comparison, Fig. 4 shows the Stokes-Einstein rela-

tion with the hydrodynamic radius rH being set to rNi ¼
1:15 �A. The experimental data are underestimated by more
than a factor of 2, and the temperature dependence is
significantly different: While from experiment DNi� ¼
const is found, DNi� scales with kBT in Eq. (1). This is

FIG. 3. Diffusion constants versus inverse temperature. The
circles represent D� obtained from � via the Stokes-Einstein

relation, Eq. (1). The squares correspond to the Ni self-diffusion
constant DNi, directly measured by quasielastic neutron scatter-
ing. Corresponding fits of the VFT law are shown by solid lines.
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FIG. 2 (color online). Viscosity of Zr64Ni36 as a function of
temperature. The solid symbols correspond to data obtained
from samples with different masses and the solid line a corre-
sponding fit of the Vogel-Fulcher-Tammann law, Eq. (3). Shown
for comparison are data from Ohsaka, Chung, and Rhim [18]
(open symbols) with a corresponding fit of an Arrhenius law
(dashed line).
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FIG. 4 (color online). DNi � � versus temperature (symbols). In
order to guide the eye, a linear fit to the data is also shown (solid
line). The dashed and dotted lines correspond to the Stokes-
Einstein relation, Eq. (1), with different choices of the hydro-
dynamic radius rH ¼ crNi.
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also evident from Fig. 3, where D, calculated from �, is
also shown. The measured self-diffusion coefficients DNi

are underestimated by more than 70%, and the significantly
different temperature dependence in Fig. 3 is already vis-
ible by the eye.

In an attempt to better fit Eq. (1) to the experimental
data, the hydrodynamic radius rH is set to crNi with c being
a coefficient. With c ¼ 2=3, Eq. (1) transforms into the
Sutherland-Einstein relation [26]. If c ¼ 0:467, Eq. (1)
matches the experimental data at least at TL. In this case,

rH � 0:53 �A. However, the agreement among the tempera-
ture dependencies becomes even worse when rH is low-
ered; see Fig. 4. This could be resolved only by the use of a
temperature-dependent radius. In this case, rH would have
to vary by a physically unrealistic factor of 1.7 over the
investigated temperature range.

According to mode-coupling theory [27], the dynamics
in a liquid is strongly coupled when the particle density is
large. This leads to a freezing of the atomic motion when a
critical temperature Tc is approached upon cooling. In this
case, the diffusion coefficient D and the inverse of the
viscosity, ��1, are proportional to the same scaling law
ðT � TcÞ� with � > 0 being a nonuniversal exponent.
Hence, when T ! Tc, D� ¼ const is asymptotically ob-
tained. From a comparison to dynamics in multicomponent
Zr-based bulk glass-forming alloys [28], Tc is estimated to
be � 900 K in Zr64Ni36. Our results have been obtained at
temperatures well above Tc. Apparently, possible devia-
tions from the mode-coupling-theory scaling behavior are
similar with respect to temperature for both mass transport
coefficients.

In conclusion, by using ESL as an advanced technique,
the quality of the obtained experimental data allowed us to
establish a relation between viscosity and self-diffusion in
the case of Zr64Ni36. We find D� ¼ const, which is in line
with mode-coupling-theory predictions for temperatures
close to Tc but in contrast to the Stokes-Einstein relation.
Whether this is also valid for a less dense liquid, ’< 0:5,
is a subject of ongoing research.

We thank Thomas Voigtmann and Matthias Sperl for a
critical reading of the manuscript.
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