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We follow the evolution of fermion pairing in the dimensional crossover from three-dimensional to two-

dimensional as a strongly interacting Fermi gas of 6Li atoms becomes confined to a stack of two-

dimensional layers formed by a one-dimensional optical lattice. Decreasing the dimensionality leads to

the opening of a gap in radio-frequency spectra, even on the Bardeen-Cooper-Schrieffer side of a

Feshbach resonance. The measured binding energy of fermion pairs closely follows the theoretical

two-body binding energy and, in the two-dimensional limit, the zero-temperature mean-field Bose-

Einstein-condensation to Bardeen-Cooper-Schrieffer crossover theory.
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Interacting fermions in coupled two-dimensional (2D)
layers present unique physical phenomena and are central
to the description of unconventional superconductivity in
high-transition-temperature cuprates [1] and layered or-
ganic conductors [2]. Experiments on ultracold gases of
fermionic atoms have allowed access to the crossover from
Bose-Einstein condensation (BEC) of tightly bound fer-
mion pairs to Bardeen-Cooper-Schrieffer (BCS) superflu-
idity of long-range Cooper pairs in three spatial
dimensions [3,4] and, more recently, the confinement of
interacting Fermi gases to two spatial dimensions [5–9]. A
fermionic superfluid loaded into a periodic potential should
form stacks of two-dimensional superfluids with tunable
interlayer coupling [10–13], an ideal model for Josephson-
coupled quasi-2D superconductors [1,14]. For deep poten-
tials in the regime of uncoupled 2D layers, increasing the
temperature of the gas is expected to destroy superfluidity
through the Berezinskii-Kosterlitz-Thouless mechanism
[15–17], while more exotic multiplane vortex loop excita-
tions are predicted for a three-dimensional (3D) aniso-
tropic BCS superfluid near the critical point [18].

In this Letter, we study fermion pairing across the cross-
over from 3D to 2D in a periodic potential of increasing
depth. To form a bound state in 3D, the attraction between
two particles in a vacuum must exceed a certain threshold.
However, if the two particles interact in the presence of a
Fermi sea, the Cooper mechanism allows pairing for arbi-
trarily weak interactions [19]. In 2D, even two particles in a
vacuum can bind for arbitrarily weak interactions.
Surprisingly, the mean-field theory of the BEC-BCS cross-
over in 2D predicts that the binding energy of fermion pairs
in the many-body system is identical to the two-body
binding energy Eb [20]. Indeed, to break a pair and remove
one pairing partner from the system costs an energy [21]

Eb;MF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p �� within mean-field theory, where

� is the chemical potential and � is the pairing gap. In 2D,
one finds [20] � ¼ EF � Eb=2 and �2 ¼ 2EFEb, where
EF is the Fermi energy, and thus Eb;MF ¼ Eb; i.e., the

many-body and two-body binding energies are predicted
to be identical throughout the BEC-BCS crossover.
We realize a system that is tunable from 3D to 2D with a

gas of ultracold fermionic 6Li atoms trapped in an optical
trap and a standing-wave optical lattice. The lattice pro-
duces a periodic potential along the z direction,

VðzÞ ¼ V0sin
2ð�z=dÞ; (1)

with depth V0 and lattice spacing d ¼ 532 nm. Together
with the optical trap, the lattice interpolates between the
3D and 2D limits. It gradually freezes out motion along one
dimension and confines particles in increasingly uncoupled
layers. Features characteristic of the 2D system appear as
the strength of the periodic potential is increased. The
threshold for pairing is reduced, allowing pairs to form
for weaker attractive interactions than in the 3D system.
The effective mass of particles increases along the confined
direction, and the center of mass and relative degrees of
freedom of an atom pair become coupled [11]. For a deep
potential that suppresses interlayer tunneling, the system
is an array of uncoupled two-dimensional layers. Here,
the center of mass and relative motion decouple and fer-
mion pairs form for the weakest interatomic attraction
[11,22,23].
In the experiment, the appearance of bound fermion

pairs is revealed using radio-frequency (rf) spectroscopy.
The atomic gas consists of an equal mixture of 6Li atoms in
the first and third hyperfine states (denoted as j1i and j3i),
chosen to minimize final-state interaction effects in the rf
spectra [24]. Interactions between atoms in states j1i and
j3i are greatly enhanced by a broad Feshbach resonance at
690.4(5) G [25]. An rf pulse is applied to transfer atoms
from one of the initial hyperfine states to the unoccupied
second hyperfine state (denoted as j2i). In previous work
on rf spectroscopy of 40K fermions in a deep one-
dimensional (1D) lattice [8], an rf pulse transferred atoms
from an initially weakly interacting state into a strongly
interacting spin state, likely producing polarons [26]. In
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our Letter, the initial state is the strongly interacting,
largely paired Fermi gas in equilibrium, and the final state
is weakly interacting.

An asymmetric dissociation peak (the bound-to-free
transition) in the rf spectrum indicates the presence of
fermion pairs. For two-particle binding, the pair dissocia-
tion line shape in the 3D and 2D limits is proportional to
�ðh�� EbÞ=�2, with � the free-particle density of states
and � ¼ �ð�rf � �hfÞ the offset of the rf frequency �rf

from the hyperfine splitting �hf (plus symbol: j1i ! j2i
transition; minus symbol: j3i ! j2i transition). This form
can be obtained from Fermi’s golden rule and the bound-
state wave function in momentum space; see also
Refs. [21,27]. In 2D, the expected dissociation line shape
is then proportional to

Ið�Þ / �ðh�� EbÞ
�2

: (2)

In addition to the pairing peak, at finite temperature one
expects a peak in the rf spectrum due to unbound atoms
(the free-to-free transition). A narrow bound-to-bound
transition can also be driven at an offset frequency �bb ¼
ðEb � E0

bÞ=h that transfers one spin state of the initial

bound pair with binding energy Eb into a bound state of
j2i with j1i or j3i, of binding energy E0

b. For a j1i � j3i
mixture near the Feshbach resonance, Eb � E0

b [24], so

the bound-to-bound peak is well-separated from the
bound-to-free and free-to-free peaks. As very recently
calculated [28], final-state interactions and the anomalous
nature of scattering in 2D introduce an additional factor of

ln2ðEb=E
0
b
Þ

ln2½ðh��EbÞ=E0
b
�þ�2 into Eq. (2), causing a rounding off of the

sharp peak expected from the step function.
In a 1D lattice, the binding energy for two-body pairs is

determined by the lattice spacing d, the depth V0, and the
3D scattering length a. In the 2D limit V0 � ER, with

recoil energy ER ¼ @
2�2

2md2
, the scattering properties of the

gas are completely determined by Eb [22,23]. In that limit,
the lattice wells can be approximated as harmonic traps
with level spacing @!z ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
V0ER

p
and harmonic oscillator

length lz ¼
ffiffiffiffiffiffiffi
@

m!z

q
. In a many-particle system in 2D, the

ratio of the binding energy to the Fermi energy determines
the strength of interactions. The 2D scattering amplitude
fðEFÞ ¼ 2�

� lnðkFa2DÞþi�=2 for collisions with energy EF is

parametrized by lnðkFa2DÞ, where kF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEF

p
=@ and

a2D ¼ @=
ffiffiffiffiffiffiffiffiffiffi
mEb

p
. It is large when j lnðkFa2DÞj & 1

[22,23], corresponding to the strong-coupling regime
[28,29]. The BEC side of the BEC-BCS crossover corre-
sponds to negative values of lnðkFa2DÞ, while the BCS side
corresponds to positive values [20].

The experimental sequence proceeds as follows. An
ultracold gas of 6Li is produced by sympathetic cooling
with 23Na as described previously [21]. The 6Li atoms are
transferred from a magnetic trap to an optical dipole trap
(wavelength 1064 nm, waist 120 �m), with axial harmonic

confinement (frequency 22.8 Hz) provided by magnetic
field curvature. With 6Li polarized in state j1i, the mag-
netic bias field is raised to 568 G, and an equal mixture of
hyperfine states j1i and j3i is created using a 50% rf
transfer from j1i to j2i followed by a full transfer from
j2i to j3i. The field is then raised to the final value, and
evaporative cooling is applied by lowering the depth of the
optical dipole trap, resulting in a fermion pair condensate
with typically 5� 105 atoms per spin state. The lattice is
then ramped up over 100 ms. The retro-reflected lattice
beam (wavelength 1064 nm) is at an angle of 0.5 degrees
from the optical dipole trap beam, enough to selectively
reflect only the lattice beam. The depth of the lattice is
calibrated using Kapitza-Dirac diffraction of a 23Na BEC
and a 6Li2 molecular BEC and by lattice modulation

spectroscopy on the 6Li cloud. The magnetic field and
hyperfine splitting are calibrated using rf spectroscopy on
spin-polarized clouds. After loading the lattice, the rf pulse
is applied for a duration of typically 1 ms. Images of state
j2i and either j1i or j3i are recorded in each run of the
experiment.
To ensure loading into the first Bloch band, the Fermi

energy and temperature of the cloud are kept below the

second band. The 2D Fermi energy E2D
F ¼ 2�@2n

m , with n the

2D density per spin state, is typically h� 10 kHz. The
bottom of the second band is at least one recoil energy
ER ¼ h� 29:3 kHz above the bottom of the first band in
shallow lattices and up to about h� 300 kHz for the deep-
est lattices. The temperature is estimated to be on the order
of the Fermi energy.
rf spectra are recorded for various lattice depths and

interaction strengths. Figure 1 shows examples of spectra
over a range of lattice depths at the 3D Feshbach resonance
and on the BCS side of the resonance at 721 G, where
fermion pairing in 3D is a purely many-body effect. At the
lowest lattice depths, the spectra show only a single peak,
shifted to positive offset frequencies due to many-body
interactions. This is similar to the case without a lattice
[24,30]; to discern a peak due to fermion pairs from a peak
due to unbound atoms would require locally resolved rf
spectroscopy of imbalanced Fermi gases [30]. However, as
the lattice depth is raised, the single peak splits into two
and a clear pairing gap emerges. The narrow peak at zero
offset is the free-to-free transition, and the asymmetric
peak at positive offset is the pair dissociation spectrum.
The pair spectrum, especially on resonance, shows a sharp
threshold and a long tail corresponding to dissociation of
fermion pairs into free atoms with nonzero kinetic energy.
Binding energies are determined from the offset fre-

quency of the pairing threshold. Although the line shape
in Eq. (2) jumps discontinuously from zero to its maximum
value, the spectra are observed to be broadened. This is to a
large part due to the logarithmic corrections [28] noted
above, which predict a gradual rise at the threshold
h� ¼ Eb, and a spectral peak that is slightly shifted from
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Eb. We include possible additional broadening by convolv-
ing the theoretical line shape, including the logarithmic
correction, with a Gaussian function of width wm. The
parameters Eb and wm are determined by a least-squares
fit to the measured spectrum. Typical spectra have wm of
5 kHz, consistent with our estimates of broadening based
on collisions and three-body losses. The Fourier broad-
ening is 1 kHz. Power broadening is about 5 kHz on the
free-to-free transition and less than 1 kHz on the bound-to-
free transition due to the reduced wave function overlap.
Inclusion of the logarithmic correction is found to be
necessary in order for the fit function to reproduce the
observed behavior of the high-frequency tail. The final-
state binding energy used in the logarithmic correction for
fitting is obtained from spectra where both a bound-to-
bound and a bound-to-free peak were measured. At low
lattice depths, the 2D form for the paired spectrum should
differ from the exact shape that interpolates between the
3D and 2D limits. In the case where the shape of the
spectrum is given by the 3D limit, fitting to the 2D form
overestimates the binding energy by 8%.

Figure 2 shows the measured binding energies as func-
tion of V0=ER for several interaction strengths. The binding

energies are normalized by @!z � 2
ffiffiffiffiffiffiffiffiffiffiffiffi
V0ER

p
, which equals

the level spacing in the harmonic approximation to the
lattice potential. The measured binding energies grow
with increasing lattice depth and agree reasonably well
with theoretical predictions for two-body bound pairs in
a 1D lattice [11]. The binding energy at the 3D resonance
approaches a constant multiple of @!z as the lattice
depth increases, as expected from the 2D limit [22,23].
Figure 3(a) compares the binding energies measured in
lattices deeper than 17ER to predictions in the harmonic
quasi-2D limit [22,23]. At the 3D Feshbach resonance, we
find Eb ¼ 0:232ð16Þ@!z for deep lattices. The error bar
refers to the standard error on the mean. This value is close
to the harmonic confinement result of 0:244@!z [23]. The
exact calculation [11] predicts a constant downward shift
of the binding energy by 0:2ER for deep lattices due to the
anharmonicity of the sinusoidal potential. For V0 of about
20ER, this gives a prediction of 0:22@!z, also close to the
measured value.
Figure 3(b) shows the binding energy measured in

deep lattices normalized by the exact two-body result
[11] versus the many-body interaction parameter
lnðkFa2DÞ. Overall, the binding energies are close to the
two-body value, even in the strong-coupling regime for
j lnðkFa2DÞj< 1, as predicted by zero-temperature mean-
field theory [20]. The data show a slight downward
deviation for the strongest coupling. At fixed reduced
temperature T=TF, the relationship should be universal. It
will thus be interesting to see in future work whether the
binding energy depends significantly on temperature.
The bound-to-bound transition is seen in Fig. 4 as a

narrow peak at negative offset frequencies. In the regime
whereEb can be found from the pair dissociation spectrum,
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FIG. 2 (color online). Binding energy Eb versus lattice depth
V0 at several values of the 3D scattering length a. Eb is
normalized via the lattice frequency !z. Red circles: results
from spectra at 690.7(1) G and d=a ¼ �0:01ð4Þ. Green
triangles: 720.7(1) G, d=a ¼ �1:15ð2Þ. Blue squares:
800.1(1) G, d=a ¼ �2:69ð1Þ. Curves show predictions from
Orso et al. [11]. Horizontal black dashed line: harmonic ap-
proximation result for 1=a ¼ 0.
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FIG. 1 (color online). Evolution of fermion pairing in the
3D-to-2D crossover in a one-dimensional optical lattice, ob-
served via rf spectroscopy. Shown is the transferred atom num-
ber versus rf offset frequency relative to the atomic hyperfine
splitting. (a) Spectra at the Feshbach resonance at 690.7(1) G
with d=a ¼ �0:01ð4Þ. Lattice depths from top to bottom in units
of ER: 1.84(3), 4.8(2), 6.1(2), 9.9(4), 12.2(4), 18.6(7), and 19.5
(7). (b) Spectra on the BCS side at 720.7(1) G, d=a ¼ �1:15ð2Þ.
Lattice depths in units of ER: 2.75(5), 4.13(7), 4.8(1), 6.0(2), 10.3
(2), and 18.1(4).
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the bound-to-bound peak position directly yields the bind-
ing energy in the final state E0

b. For example, the spectrum

in Fig. 4(a), taken at the 3D j1i � j3i resonance at
690.7(1) G and V0=ER ¼ 9:59ð7Þ, gives E0

b=ER ¼ 18:0ð1Þ
at a final-state interaction of d=a0 ¼ 8:41ð2Þ. Likewise, the
spectrum in Fig. 4(b) at V0=ER ¼ 26:1ð4Þ and a magnetic
field of 751.1(1) G, where d=a0 ¼ 2:55ð1Þ, gives E0

b=ER ¼
5:3ð1Þ. An independent measurement for d=a ¼ 2:55ð2Þ
using the bound-to-free spectrum at 653.55 G yields
Eb=ER ¼ 5:25ð2Þ, showing that bound-to-bound transi-
tions correctly indicate binding energies.

The BCS side of the 2D BEC-BCS crossover is reached
in Fig. 4(c) by increasing the number of atoms to increase
EF and increasing the magnetic field to reach a lower
binding energy. In Fig. 4(c), the central Fermi energy is
h� 43ð6Þ kHz and T=TF ¼ 0:5ð2Þ. The magnetic field is
set to 834.4(1) G, where d=a ¼ �3:06ð1Þ, and the final-
state interactions between j1i and j2i are resonant, with
d=a0 ¼ �0:01ð3Þ. The lattice depth is V0=ER ¼ 26:4ð3Þ.
Thus, we know that E0

b ¼ 0:232ð16Þ@!z ¼ 2:4ð2ÞER at

this lattice depth. From the bound-to-bound transition in
Fig. 4(c), we can then directly determine the binding
energy of j1i � j3i fermion pairs to be Eb=ER ¼ 0:9ð2Þ.
The theoretical prediction [11] for two-body binding gives
Eb=ER ¼ 0:82ð1Þ. The measured binding energy gives a
many-body interaction parameter of lnðkFa2DÞ ¼ 0:6ð1Þ,
on the BCS side but within the strongly interacting regime,
where one expects many-body effects beyond mean-field

BEC-BCS theory [26,29]. It is therefore interesting that the
measured binding energy is close to the expected two-body
binding energy to much better than the Fermi energy, as
predicted by mean-field theory [20].
In conclusion, we have measured the binding energy of

fermion pairs along the crossover from 3D to 2D in a one-
dimensional optical lattice. Measurements were performed
at several lattice depths and scattering lengths, allowing
quantitative comparison with theoretical predictions.
Considering the fact that the gas is a strongly interacting
many-body system, the close agreement with two-body
theory is surprising, especially in the strong-coupling re-
gime. While mean-field BEC-BCS theory in 2D predicts
this behavior [20], it misses other important features of the
many-body system, most strikingly the interaction between
fermion pairs [13]. Superfluidity in a one-dimensional
lattice will be an exciting topic for future studies. Stacks
of weakly coupled, superfluid 2D layers would constitute a
basic model of the geometry found in high-temperature
superconductors.
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FIG. 4 (color online). Spectra including the bound-to-bound
transition, a narrow peak at negative rf offset. Shown are spectra
at magnetic fields of (a) 690.7(1) G, (b) 751.1(1) G, and
(c) 834.4(1). The interaction parameters d=a are (a) �0:01ð4Þ,
(b) �1:91ð1Þ, and (c) �3:06ð1Þ. Lattice depths in units of ER are
(a) 9.59(7), (b) 26.1(4), and (c) 26.4(3). The bound-to-free
transition is not visible in (c). The transfer is from j1i to j2i
in (a) and (b) and from j3i to j2i in (c).

FIG. 3 (color online). (a) Binding energy of fermion pairs
versus interaction strength lz=a for deep lattices (V0 > 17ER).
Solid curve: theoretical prediction in the 2D harmonic limit
[22,23]. (b) Ratio of the measured binding energy to the two-
body result [11] versus lnðkFa2DÞ for V0 > 17ER. Black dia-
monds: binding energy determined from the bound-to-bound
transition with resonant final-state interactions. Other data sym-
bols: see Fig. 2. Horizontal line: zero-temperature mean-field
theory [20].
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