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A geometric phase of electron spin is studied in arrays of InAlAs/InGaAs two-dimensional electron gas

rings. By increasing the radius of the rings, the time-reversal symmetric Aharonov-Casher oscillations of

the electrical resistance are shifted towards weaker spin-orbit interaction regions with their shortened

period. We conclude that the shift is due to a modulation of the spin geometric phase, the maximum

modulation of which is approximately 1.5 rad. We further show that the Aharonov-Casher oscillations in

various radius arrays collapse onto a universal curve if the radius and the strength of Rashba spin-orbit

interaction are taken into account. The result is interpreted as the observation of the effective spin-

dependent flux through a ring.
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Manipulation of electron spin in solid state devices is
important for spintronics. A promising way to control spin
is through the electric field [1]. So far, electrical manipu-
lation of spin has been observed in a semiconductor two-
dimensional electron gas (2DEG) [2,3] and topological
insulator [4]. The physical origin of these observations is
a gate control of Rashba-type spin-orbit interaction (SOI)
[5], which gives rise to the effective magnetic field BR

perpendicular to both the propagation direction of the
electron waves and the electric field induced by an asym-
metric quantum well. In the presence of SOI, i.e., the
Rashba field BR, the time evolution leads to the precession
of spins. Since the direction of the precession depends on a
propagation path, a phase contribution from the spin pre-
cession is called a dynamical phase. In this sense, the spin-
manipulation experiments have mainly demonstrated a
control of the dynamical phase of spin through SOI.

In general, the spin-interference effect induced by the
electric field is referred to as the Aharonov-Casher (AC)
effect [6,7], which is the electromagnetic dual of the
Aharonov-Bohm (AB) effect [8]. Previous theoretical
works have revealed that the AC phase consists of not
only the dynamical phase, but also a geometric phase of
electron spin [9,10]. A geometric phase is now commonly
used in various fields of physics, and has been a topic of
intense theoretical and experimental research since the
pioneering work of Berry [11]. In particular, the spin
geometric phase is related to topological spin currents
[12] and is robust against the dephasing [13]; thus it is of
great importance for future spintronics. So far, however,
observation of the spin geometric phase has remained
challenging. Although the split of Fourier spectra of the
AB oscillations was discussed from the view point of the
spin geometric phase [14,15], those experiments did not
show its direct observation.

It has been theoretically shown [10,16–18] that spins
traversing a one-dimensional Rashba ring subtend a solid
angle 2�ð1� cos�Þ, which characterizes the spin geomet-
ric phase. The parameter � denotes the tilt angle between a
mean axis of the spin precession and the normal direction
to the ring plane as depicted in Fig. 1, and is written as

tan� ¼ 2m��r
@
2

; (1)

where m� is the effective mass, � is the strength of Rashba
SOI, and r is the radius of the ring. As one can see in
Eq. (1), the spin geometric phase is affected by the radius
and the strength of Rashba SOI. It is worth noting that if the
spin precession is fast enough compared with propagation
of the electron waves along the ring (adiabatic limit), the
spin precession axis lies parallel to BR (� ! �=2) [16];
this condition is realized with a large radius and strong

FIG. 1 (color online). Schematic image of the spin geometric
phase. The axis label j�ii denotes the spinor along the i axis. A
2DEG ring subject to Rashba SOI is assumed to lie in the x-y
plane; therefore, BR points along the radial direction. The spin
eigenstate is not aligned with BR but with the precession axis,
even in the absence of an external perpendicular field [16].
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Rashba SOI. In this condition the spin geometric phase
specifically corresponds to a Berry phase [11] of electron
spin. By contrast, in the nonadiabatic condition, the spin
precession axis cannot follow BR and is no longer parallel
to it (� � �=2). As a result, an Aharonov-Anandan phase
[19] of spin arises.

In this Letter, we present the observation of the spin
geometric phase in pure spin systems. Specifically, the
radius dependence of the spin geometric phase in the
time-reversal symmetric AC effect of the electrical resist-
ance is discussed. In addition, a universal oscillatory be-
havior of the AC effect is demonstrated. The result
corresponds to the observation of the effective spin-
dependent flux, which has only been discussed theoreti-
cally [6,20].

An InAlAs/InGaAs structure was epitaxially grown on a
(001) InP substrate by metal organic chemical vapor dep-
osition. Ring arrays were fabricated by means of electron
beam lithography and reactive-ion etching. One array con-
sists of 40� 40 rings with 0:608 �m of the radius, the
other four arrays consist of 50� 50 rings with the radius
between 0:525 and 1:05 �m. A scanning electron micro-
graph of the 40� 40 ring array is shown in the inset of
Fig. 2. The ring arrays were covered with 200 nm of an
Al2O3 insulator layer by atomic layer deposition and a Cr/
Au top-gate electrode, in order to control the Rashba SOI
strength � by the gate voltage Vg. All the measurements

were performed at a temperature of 1.7 K.
In order to inspect the AC effect, interference from the

orbital part of the wave function must be eliminated. Note
that the gate voltage affects not only the Rashba SOI
strength, but also the carrier density, i.e., the electron
wavelength. The strategy in this Letter, which is in the

same manner as previous studies [2,21], is to investigate
the gate voltage dependence of the Al’tshuler-Aronov-
Spivak (AAS) amplitude [22] at zero magnetic field
(B ¼ 0).
Figure 2 shows magnetoresistance curves measured us-

ing the 40� 40 ring array for fixed gate voltages. It is well
known that a perpendicular magnetic field to a ring induces
the AB effect, which gives rise to resistance oscillations
with a period of one flux quantum�0 ð¼ h=eÞ. The period
observed in Fig. 2, however, is �0=2. Also, it is confirmed
that a higher magnetic field suppresses the amplitude of the
resistance oscillations, whereas in the case of the AB
effect, the oscillations should persist at relatively high
magnetic fields. According to these facts, our measured
magnetoresistance oscillations are attributed to the AAS
effect [22], that is, the AB effect in the time-reversal paths.
Since our fabricated arrays consist of a huge number of
rings, the ensemble averaging allows one to observe the
AAS effect instead of the AB effect [23]. It is notable that
in the time-reversal paths, a phase contribution from the
orbital part of the wave function is always constructive at
zero magnetic field.
Figure 3(a) displays the filtered AAS oscillation from

the magnetoresistance at the gate voltage of �2:4 V (see
Fig. 2). The gate voltage dependence of the AAS oscilla-
tions is shown in Fig. 3(b). At zero magnetic field, a phase
contribution from the orbital part of the wave function is
invariable, therefore along the vertical axis, namely Vg

axis, the spin part of the wave function plays an important
role through Rashba SOI. Figure 3(c) shows the AAS
amplitude plotted against the gate voltage at zero magnetic

FIG. 2 (color online). Magnetoresistance curves of the
40� 40 ring array (r ¼ 0:608 �m for each ring) as a function
of gate voltage. The curves are shifted vertically for clarity.
Inset: Scanning electron micrograph of the 40� 40 ring array.
Other fabricated four arrays consist of 50� 50 rings with the
radius of 0.525, 0.681, 0.857, and 1:05 �m.

FIG. 3 (color online). (a) AAS oscillation of the 40� 40 array
(r ¼ 0:608 �m rings) at Vg ¼ �2:4 V. The horizontal axis

represents the magnetic field. (b) Gate voltage dependence of
the AAS oscillations. The color scale is shown in upper-right
margin. (c) AAS amplitude at B ¼ 0 as a function of gate
voltage (time-reversal AC effect). The vertical axis represents
the gate voltage. The solid line was calculated by using Eq. (2).
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field. In Fig. 3(c), one can clearly see the phase switching
by varying the gate voltage. This phase modulation is
ascribed to the spin interference in the time-reversal paths,
i.e., the time-reversal AC effect. Notice here Bergsten et al.
[2] obtained similar results, but they had to average mag-
netoresistance curves at slightly different gate voltages
because their sample consisted of 6� 6 rings at the
most. On the other hand in our samples, which consist of
a huge number of rings, owing to the ensemble averaging
the time-reversal AC effect is readily acquired.

The time-reversal AC effect has been obtained for the
five ring arrays. By analyzing the Shubnikov–de Haas

effect, a linear relation between the strength of Rashba
SOI and the gate voltage has been acquired. Figure 4(a)
displays the time-reversal AC oscillations as a function of
Rashba SOI strength. The amplitude of the oscillations has
been normalized for clarity. Solid lines are calculated time-
reversal AC oscillations by using the equation derived by
Frustaglia and Richter [16]:

�R��0

�R�¼0

¼ cos

�
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2m��r
@
2

�
2

s �
; (2)

where �R��0 and �R�¼0 are resistance modulations due to
the spin interference with and without Rashba SOI, respec-
tively. By considering Eqs. (1) and (2) together, the time-
reversal AC effect can also be expressed as the following
forms [16].

�R��0

�R�¼0

¼ cos

�
2�

cos�

�
(3)

¼ cos

�
2�

2m��r
@
2

sin�� 2�ð1� cos�Þ
�
: (4)

The argument of Eq. (3) can be divided into two
components as displayed in Eq. (4): one is the dynamical

phase, 2� 2m��r
@
2 sin�, another is the spin geometric phase,

2�ð1� cos�Þ.
To evaluate the spin geometric phase, a cosine function

has been fitted to each AC oscillation. The total phase
obtained by the fit was equated with the argument of the
cosine of Eq. (3), namely 2�= cos�. Accordingly, cos� has
been obtained as a function of Rashba SOI strength. Now
the spin geometric phase, 2�ð1� cos�Þ, can be inspected.
The relation between the spin geometric phase and the
radius for fixed Rashba SOI strengths (� ¼ �1:4, �1:7,
and �2:0 peVm) is shown in Fig. 4(b). Solid lines are
calculated results obtained by equating the argument of
Eqs. (2) and (3). We found from both experimental and
calculated results that the spin geometric phase tends to
increase in larger radius samples. The difference of the spin
geometric phase between the smallest (r ¼ 0:524 �m) and
the largest (r ¼ 1:05 �m) ring arrays is approximately
1.5 rad for any fixed value of �. Arrows in Fig. 4(b)
indicate the difference of the spin geometric phase between
� ¼ �1:4 peVm and�2:0 peVm. For the smallest radius
array the difference is 0.96 rad, whereas 0.75 rad for the
largest one. This relation holds as well for calculated
results, 0.84 rad for the smallest array and 0.74 rad for
the largest one. Thus, the observed radius dependence of
the spin geometric phase is consistent with calculation.
One might have concerns about the multichannel effect,

which inevitably gives rise to a randomization of the AB
interference [3,24]. In this study, by taking advantage of
the time-reversal symmetric interference, we have ruled
out the orbital interference and observed the clear AC
oscillations, which only depend on the SOI strength [10].
Furthermore, the spin geometric phase is independent from

FIG. 4 (color online). (a) Normalized time-reversal AC oscil-
lations of the electrical resistance plotted against the Rashba SOI
strength (B ¼ 0). According to the Shubnikov–de Haas analysis,
the Rashba SOI strength � is proportional to the gate voltage.
Solid lines are calculated results by using Eq. (2). (b) Spin
geometric phase vs radius for fixed Rashba SOI strengths,
together with calculated results (solid lines).
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the Fermi velocity and the number of channels by its
definition. Hence, the multichannel effect can be neglected
in our experiments.

Turning now to the effective spin-dependent flux of the
AC effect. As is well known, the AB effect is intimately
related to the magnetic flux through a ring. From the
viewpoint of the electromagnetic duality between the AB
and AC effects, the latter can be regarded as a conductance
modulation by the effective spin-dependent flux [6,20]. To
examine this duality, the time-reversal AC oscillations are

replotted against
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2m��r

@
2 Þ2

q
in Fig. 5 [see Eq. (2)]. As

one can see in Fig. 5, the AC oscillations universally occur

for all the samples. Therefore, the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2m��r

@
2 Þ2

q
is an

oscillation unit for the time-reversal AC effect. The elec-
tromagnetic correspondence of this term is a flux for the

AAS effect, �
�0=2

, with � being the magnetic flux. Thus,

the duality is explicitly written as

�

�0=2
()

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2m��r
@
2

�
2

s
: (5)

Hence, the right-hand side of Eq. (5) can be regarded as the
effective spin-dependent flux penetrating a ring.

In conclusion, by analyzing the radius dependence of the
time-reversal AC effect of the electrical resistance, we
have demonstrated that the largest modulation of the spin

geometric phase reaches approximately 1.5 rad. Thus, we
have succeeded in determining the spin geometric phase
quantitatively. In addition, we have experimentally verified

that the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2m��r

@
2 Þ2

q
is an oscillation unit for the

time-reversal AC effect. These results indicate a new spin-
phase degree of freedom and provide further understanding
of the AC effect.
This work was financially supported by Grants-in-Aid

from the Japan Society for the Promotion of Science
(JSPS) and the Ministry of Education, Culture, Sports,
Science and Technology (MEXT). J. N. acknowledges sup-
port from Strategic Japanese-German Joint Research
Program.

*nitta@material.tohoku.ac.jp
[1] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys.

Rev. Lett. 78, 1335 (1997).
[2] T. Bergsten, T. Kobayashi, Y. Sekine, and J. Nitta, Phys.

Rev. Lett. 97, 196803 (2006).
[3] M. König et al., Phys. Rev. Lett. 96, 076804 (2006).
[4] F. Qu et al., Phys. Rev. Lett. 107, 016802 (2011).
[5] E. I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960);

Sov. Phys. Solid State 2, 1109 (1960).
[6] H. Mathur and A.D. Stone, Phys. Rev. Lett. 68, 2964

(1992).
[7] Y. AharonovandA. Casher, Phys. Rev. Lett. 53, 319 (1984).
[8] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
[9] T.-Z. Qian and Z.-B. Su, Phys. Rev. Lett. 72, 2311 (1994).
[10] J. Nitta, F. E. Meijer, and H. Takayanagi, Appl. Phys. Lett.

75, 695 (1999).
[11] M.V. Berry, Proc. R. Soc. A 392, 45 (1984).
[12] D. Loss, P. Goldbart, and A.V. Balatsky, Phys. Rev. Lett.

65, 1655 (1990).
[13] A. Carollo, I. Fuentes-Guridi, M. F. Santos, and V. Vedral,

Phys. Rev. Lett. 90, 160402 (2003).
[14] A. F. Morpurgo et al., Phys. Rev. Lett. 80, 1050 (1998).
[15] J.-B. Yau, E. P. De Poortere, and M. Shayegan, Phys. Rev.

Lett. 88, 146801 (2002).
[16] D. Frustaglia and K. Richter, Phys. Rev. B 69, 235310

(2004).
[17] D. Bercioux, D. Frustaglia, and M. Governale, Phys. Rev.

B 72, 113310 (2005).
[18] M. J. van Veenhuizen, T. Koga, and J. Nitta, Phys. Rev. B

73, 235315 (2006).
[19] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593

(1987).
[20] Y. Meir, Y. Gefen, and O. Entin-Wohlman, Phys. Rev.

Lett. 63, 798 (1989).
[21] T. Koga, Y. Sekine, and J. Nitta, Phys. Rev. B 74, 041302

(R) (2006).
[22] B. L. Al’tshuler, A.G. Aronov, and B. Z. Spivak, Pis’ma

Zh. Eksp. Teor. Fiz. 33, 101 (1981); JETP Lett. 33, 94
(1981).

[23] C. P. Umbach et al., Phys. Rev. Lett. 56, 386 (1986).
[24] G. Cernicchiaro, T. Martin, K. Hasselbach, D. Mailly, and

A. Benoit, Phys. Rev. Lett. 79, 273 (1997).

FIG. 5 (color online). Universal AC oscillations of the
electrical resistance at zero magnetic field. The data are the
same as those shown in Fig. 4(a) but plotted against different
arguments. Solid lines represent the function in the right-hand
side of Eq. (2).

PRL 108, 086801 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

24 FEBRUARY 2012

086801-4

http://dx.doi.org/10.1103/PhysRevLett.78.1335
http://dx.doi.org/10.1103/PhysRevLett.78.1335
http://dx.doi.org/10.1103/PhysRevLett.97.196803
http://dx.doi.org/10.1103/PhysRevLett.97.196803
http://dx.doi.org/10.1103/PhysRevLett.96.076804
http://dx.doi.org/10.1103/PhysRevLett.107.016802
http://dx.doi.org/10.1103/PhysRevLett.68.2964
http://dx.doi.org/10.1103/PhysRevLett.68.2964
http://dx.doi.org/10.1103/PhysRevLett.53.319
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRevLett.72.2311
http://dx.doi.org/10.1063/1.124485
http://dx.doi.org/10.1063/1.124485
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1103/PhysRevLett.65.1655
http://dx.doi.org/10.1103/PhysRevLett.65.1655
http://dx.doi.org/10.1103/PhysRevLett.90.160402
http://dx.doi.org/10.1103/PhysRevLett.80.1050
http://dx.doi.org/10.1103/PhysRevLett.88.146801
http://dx.doi.org/10.1103/PhysRevLett.88.146801
http://dx.doi.org/10.1103/PhysRevB.69.235310
http://dx.doi.org/10.1103/PhysRevB.69.235310
http://dx.doi.org/10.1103/PhysRevB.72.113310
http://dx.doi.org/10.1103/PhysRevB.72.113310
http://dx.doi.org/10.1103/PhysRevB.73.235315
http://dx.doi.org/10.1103/PhysRevB.73.235315
http://dx.doi.org/10.1103/PhysRevLett.58.1593
http://dx.doi.org/10.1103/PhysRevLett.58.1593
http://dx.doi.org/10.1103/PhysRevLett.63.798
http://dx.doi.org/10.1103/PhysRevLett.63.798
http://dx.doi.org/10.1103/PhysRevB.74.041302
http://dx.doi.org/10.1103/PhysRevB.74.041302
http://dx.doi.org/10.1103/PhysRevLett.56.386
http://dx.doi.org/10.1103/PhysRevLett.79.273

