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Departing from the usual paradigm of local operations and classical communication adopted in

entanglement theory, we study here the interconversion of quantum states by means of local operations

and shared randomness. A set of necessary and sufficient conditions for the existence of such a

transformation between two given quantum states is given in terms of the payoff they yield in a suitable

class of nonlocal games. It is shown that, as a consequence of our result, such a class of nonlocal games is

able to witness quantum entanglement, however weak, and reveal nonlocality in any entangled quantum

state. An example illustrating this fact is provided.
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It is a fact that the outcomes of measurements performed
on spatially separated (i.e., noncommunicating) quantum
systems sometimes exhibit correlations, which cannot be
explained classically, in terms of information shared before-
hand. Such correlations, called nonlocal, are revealed by the
violation of a suitable Bell inequality [1,2]. Another pecu-
liarly nonclassical feature of quantum theory is the exis-
tence of quantum entanglement, i.e., the property possessed
by composite quantum systems whose joint state cannot be
written in product form (or, more generally, as a mixture of
states in product form). Even if nonlocality and entangle-
ment are indeed intimately related, it is nowadays widely
accepted that they are in fact twowell distinct concepts: first
of all, because there exist entangled quantum states which
behave ‘‘locally’’ in many aspects [3,4]; second, because
quantum states that appear to be ‘‘maximally nonlocal’’ are
generally not the ‘‘maximally entangled’’ ones [5]. Such a
quantitative distinction is made clear by looking upon non-
locality and entanglement as two inequivalent resources.

In the resource theory of quantum entanglement, the
operational paradigm is commonly known as local opera-
tions and classical communication (LOCC) [6]: separated
parties are only allowed to exchange classical messages,
while quantum operations (i.e., preparation of quantum
states, quantum measurements, etc.) can only happen lo-
cally. In particular, quantum states cannot be directly sent
across separated locations. The LOCC paradigm, origi-
nally formulated in order to describe the ‘‘distant labora-
tories model’’, is nowadays generally accepted as the
natural operational paradigm for studying quantum entan-
glement as a resource [7]: indeed, classical communication
cannot generate entanglement, which hence becomes a
physical resource that can be processed, but not created.

In a resource theory of nonlocality, on the other hand,
the LOCC paradigm seems unjustified: even mere classical
communication constitutes in fact a nonlocal resource
and, as such, cannot be granted freely. For this reason,
some authors consider the natural operational paradigm
of nonlocality to be that of local operations and shared

randomness (LOSR) [8]. (A notable exception to this argu-
ment occurs if nonlocality is measured in terms of private
correlations: in this case, public classical communication
can be freely allowed [9].) In the LOSR framework, sepa-
rated parties are forbidden all sorts of communication,
being allowed though to ‘‘synchronize’’ their local opera-
tions with respect to a common classical random variable
shared in advance. Hence, nonlocal correlations being
defined as those correlations that cannot be simulated by
shared randomness [10], nonlocality naturally becomes a
resource in the LOSR paradigm.
The resource theory of quantum entanglement, with

respect to the resource theory of nonlocality, has received
until now much more attention in the literature: corre-
spondingly, many results are known about the interconver-
sion of quantum states by LOCC transformations [7], while
much less is known about the LOSR case [8]. The aim of
the present Letter is to contribute to bridging this gap, by
providing a set of necessary and sufficient conditions for
the existence of an LOSR protocol transforming one dis-
tributed quantum state into another. Such conditions, rather
than algebraic, are operational, in the sense that they are
expressed in terms of the payoffs that a quantum state
yields in nonlocal games. More precisely, the main result
of this Letter is to show that one quantum state can be
transformed into another by means of an LOSR protocol, if
and only if the former yields a higher payoff than the latter
for a whole class of nonlocal games, which we call semi-
quantum nonlocal games. A remarkable merit of our analy-
sis is to provide a simple and insightful proof of the fact
that all entangled quantum states are nonlocal [11]: a
corollary of our main result is that any entangled quantum
state yields a strictly higher payoff than every separable
state, in at least one semiquantum nonlocal game. This
general fact will also be illustrated in an explicit example,
clarifying how semiquantum nonlocal games are able to
faithfully witness entanglement.
Nonlocality ordering.—In order to rigorously state the

main result (Prop. 1 below), we first need to introduce
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some notation and a few definitions. In what follows, all
quantum systems are finite dimensional (i.e., their Hilbert
spaces, denoted by H , are finite dimensional) and index
sets (denoted by S, T , X, and Y) contain only a finite
number of elements. The convex set of probability distri-
butions defined on an index setX is denoted byP ðXÞ. The
set of linear operators acting on a Hilbert space H is
denoted by LðH Þ. The set of density matrices (i.e., posi-
tive semidefinite, trace-one operators) is denoted by
SðH Þ � LðH Þ.

A random source of states of a quantum system A is
represented by an ensemble � ¼ ðfpðsÞ; �sg; s 2 SÞ, where
p 2 P ðSÞ and �s 2 SðH AÞ, for all s. Given an outcome
set X ¼ fxg and a quantum system A with Hilbert space
H A, an X-probability operator-valued measure
(X-POVM, for short) on A is a family P ¼ ðPx; x 2 XÞ
of positive semidefinite operators Px 2 LðH AÞ, such thatP

x2XPx ¼ 1. We denote by MðA;XÞ the convex set of
allX-POVMs on A. A POVM P 2 MðA;XÞ induces, via
the relation pðxÞ ¼ Tr½Px%�, a linear function P: % � P%
from SðH AÞ to P ðXÞ. POVMs in MðA;XÞ are used to
model measurements performed on a quantum system A
with outcomes in X.

The notion of nonlocal games is of central importance in
our discussion (we begin here by considering the bipartite
case; the multipartite case follows directly and will be
briefly discussed at the end of the paper):

Definition 1.—The rules of a nonlocal game Gnl consist
of the following: four index sets S¼fsg,T ¼ftg,X ¼ fxg,
and Y ¼ fyg; two probability distributions p 2 P ðSÞ and
q 2 P ðT Þ; a payoff function }:S�T �X�Y!R.
A referee picks indices s 2 S and t 2 T at random with
probabilities pðsÞ and qðtÞ, and sends them separately to
two players, say Alice and Bob, respectively. The two
players, without communicating with each other, must
compute answers x 2 X and y 2 Y, respectively, and
send them to the referee, who will then pay them both
(i.e., the game is collaborative) an amount equal to
}ðs; t; x; yÞ. (It is understood that a negative payoff means
a loss; i.e., the players must pay the referee.)

First, the players are told the rules of the game. Knowing
the rules, the players are allowed to agree on any strategy
and to share any possible (static) resource. Later on, the
players and the referee agree to begin the game, and, from
that moment on, an implicit rule of all nonlocal games
forbids the players to communicate. According to quantum
theory then, anything the two players can do is to share a
bipartite quantum state %AB 2 SðH A �H BÞ and, de-
pending on the questions s and t they are presented,
perform independent measurements on A and B with val-
ues in X and Y, respectively.

Imagine now that the state %AB shared between Alice
and Bob is fixed. It is a well-defined question to ask ‘‘how
good’’ is the state %AB for playing a given nonlocal game
Gnl. In order to answer this question, it is convenient to use

a mathematical model in which the referee communicates
her questions to Alice and Bob by means of a quantum
channel. This means that the referee, depending on which
questions s 2 S and t 2 T she picked, prepares two
auxiliary quantum systems A0 and B0, with dimensions
dimH A0

> jSj and dimH B0
> jT j, in the orthonormal

states �s ¼ jsihsj and �t ¼ jtihtj, and sends them to Alice
and Bob, respectively. We suppose that the states are trans-
mitted without noise. Since Alice and Bob exactly know
which game they are playing and which state they are
sharing, the payoff they expect to gain (on average) can
be expressed by the following formula:

}�ð%AB;GnlÞ :¼ max
X

s;t;x;y

pðsÞqðtÞ}ðs; t; x; yÞ�ðx; yjs; tÞ;

(1)

where �ðx; yjs; tÞ is the joint conditional probability dis-
tribution computed as

Tr ½ðPx
A0A

�Qy
BB0

Þð�s
A0

� %AB � �t
B0
Þ�;

and the maximization is performed over all POVMs
P 2 MðA0A;XÞ and Q 2 MðBB0;YÞ.
The function }�ð%AB;GnlÞ in (1) measures the ‘‘nonlocal

utility’’ of %AB in playing a nonlocal game Gnl.
Accordingly, if another state �A0B0 2 SðH A0 �H B0 Þ is
such that }�ð�A0B0 ;GnlÞ < }�ð%AB;GnlÞ, we say that %AB

is better than �A0B0 for playing Gnl. By extending this
definition to all nonlocal games, we can introduce the
following relation:
Definition 2.—A bipartite state %AB 2 SðH A �H BÞ is

said to be (definitely) more nonlocal than another bipartite
state �A0B0 2 SðH A0 �H B0 Þ, written %AB≽nl�A0B0 , if and
only if }�ð%AB;GnlÞ > }�ð�A0B0 ;GnlÞ, for all nonlocal
games Gnl.
The above definition can be equivalently reformulated in

terms of Bell inequalities [2] as follows. Since it is known
that to any nonlocal game there corresponds a Bell inequal-
ity and, conversely, to any Bell inequality there corre-
sponds a nonlocal game [12], we can equivalently say
that %AB≽nl�A0B0 , if and only if %AB appears to be more
nonlocal than �A0B0 with respect to all Bell inequalities (or,
more precisely speaking, all Bell expressions [13]).
Local operations and shared randomness.—Let us now

turn to the LOSR paradigm within quantum theory (again,
we begin with the bipartite case): a completely positive
trace-preserving (CPTP) map E:LðH A �H BÞ !
LðH A0 �H B0 Þ is said to be an LOSR transformation, if
it can be written as

P
i�ðiÞEi �F i, where Ei:LðH AÞ !

LðH A0 Þ and F i:LðH BÞ ! LðH B0 Þ are CPTP maps for all
i, and �ðiÞ is a probability distribution [14]. We then
introduce the following definition:
Definition 3.—A bipartite state %AB 2 SðH A �H BÞ is

said to be LOSR sufficient for another bipartite state
�A0B0 2 SðH A0 �H B0 Þ, written %AB ↣�A0B0 , if and
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only if there exists an LOSR transformation mapping %AB

into �A0B0 .
It is a rather straightforward exercise to prove that

the relation ↣ implies the relation ≽nl. In fact,
%AB≽nlðEi �F iÞ%AB trivially holds for all i. On the other
hand, the payoff achievable with the convex combinationP

i�ðiÞðEi �F iÞ%AB cannot exceed the best payoff achiev-
able with each of its components; i.e., there exists i such
that ðEi �F iÞ%AB≽nl

P
i�ðiÞðEi �F iÞ%AB. This proves the

claim.
It is also straightforward to prove that separable states

are the end points of the relation ↣, i.e., for any separable
state �A0B0 , %AB↣�A0B0 , for all %AB. Suppose, in fact, that
�A0B0 2 SðH A0 �H B0 Þ is a separable state, i.e., �A0B0 ¼
P

i�ðiÞ�i
A0 � �i

B0 , for some probability distribution �ðiÞ and
some local states �i 2 SðH A0 Þ and �i 2 SðH B0 Þ. Then,
there always exists a ‘‘discard-and-prepare’’ LOSR map
E:LðH A �H BÞ ! LðH A0 �H B0 Þ such that �A0B0 ¼
Eð%ABÞ, for all %AB 2 SðH A �H BÞ, proving the claim.

These two facts together make it easy to verify that, in
any nonlocal game Gnl, all separable states yield exactly
the same payoff }sepðGnlÞ. This remark will be useful in

what follows.
Semiquantum nonlocal games.—At this point, the ques-

tion of whether the implication can be reversed, i.e.,
whether the relation ≽nl implies ↣ or not, naturally arises,
and its answer is ‘‘no.’’ Let us consider in fact those
entangled quantum states (called LHVPOV states [4]) for
which a local-hidden-variable model exists, describing the
outcome statistics of every local POVM measurement
performed on them. This means that, for any nonlocal
game Gnl, the expected payoff obtainable from such en-
tangled states never exceeds that obtainable from separable
states. However, it is impossible to create an entangled
state (even if LHVPOV) by acting with LOSR transforma-
tions on separable states. This proves the claim that
≽nl does not imply ↣.

The relation ≽nl is too weak to imply ↣. We hence
introduce a stronger version of ≽nl, by suitably enlarging
the set of nonlocal games we consider. The extended
notion of nonlocal games we need is the following:

Definition 4.—The rules of a semiquantum nonlocal
game Gsq consist of: four index sets S ¼ fsg, T ¼ ftg,
X ¼ fxg, and Y ¼ fyg; two quantum systems A0 and B0;
two random sources � ¼ ðfpðsÞ; �sg; s 2 SÞ and ! ¼
ðfqðtÞ; !tg; t 2 T Þ on A0 and B0, respectively; a payoff
function }:S �T �X �Y ! R. A referee picks indices
s 2 S and t 2 T at random with probabilities pðsÞ and
qðtÞ, and sends the corresponding states �s and !t to
Alice and Bob, respectively, (without revealing the actual
indices s and t though). The two players, without
communicating with each other, must compute answers
x 2 X and y 2 Y, respectively, and send them to the
referee, who will then pay them both an amount equal to
}ðs; t; x; yÞ.

In other words, while in conventional nonlocal games
the referee asks the players ‘‘classical’’ questions, in semi-
quantum nonlocal games the referee is allowed to ask them
‘‘quantum’’ questions. Clearly, semiquantum nonlocal
games contain, as special cases, conventional nonlocal
games (Def. 1), whenever the states that the referee sends
to Alice and Bob are perfectly distinguishable, i.e., classi-
cal. The situation is depicted in Fig. 1.
As in the case of conventional nonlocal games, the two

players are allowed to share a bipartite quantum state, say
%AB, so that the expected payoff }�ð%AB;GsqÞ is given by

the same formula (1), the only difference being that the
joint conditional probability distribution �ðx; yjs; tÞ is now
computed as

Tr ½ðPx
A0A

�Qy
BB0

Þð�sA0
� %AB �!t

B0
Þ�:

Analogously to what was done before, we can compare the
nonlocal utility of two quantum states for all semiquantum
nonlocal games and introduce the following relation:
Definition 5.—Given two bipartite states %AB 2

SðH A �H BÞ and �A0B0 2 SðH A0 �H B0 Þ, we define
the relation %AB≽sq�A0B0 , meaning that }�ð%AB;GsqÞ >
}�ð�A0B0 ;GsqÞ, for all semiquantum nonlocal games Gsq.

Since semiquantum nonlocal games contain con-
ventional nonlocal games as a special case, the relation
≽sq implies the relation ≽nl. Moreover, along the same line

of thoughts used above to show that ↣ implies ≽nl, it is
straightforward to prove that ↣ also implies ≽sq.

A fundamental equivalence.—We are now ready to state
the main result of this Letter:
Proposition 1.—Given two bipartite states %AB and

�A0B0 , %AB≽sq�A0B0 if and only if %AB↣�A0B0 .

The proof of Prop. 1 is based on arguments very similar
to those used in Ref. [15], and crucially uses the separation
theorem between convex sets [16]. Being rather technical
in nature, we omit it here, pointing the interested reader to

FIG. 1. In a semiquantum nonlocal game (Def. 4), while play-
ers still reply with classical answers, the referee is allowed to ask
quantum questions. Whenever the signals �s and!t are perfectly
distinguishable, i.e., classical, the case of conventional nonlocal
games (Def. 1) is recovered. By means of semiquantum nonlocal
games, it is possible to show that all entangled quantum states
are nonlocal (Cor. 1).
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the Supplemental Material accompanying this Letter [17].
Here we only discuss one important consequence of our
main result, that is, Prop. 1 implies that any entangled state
is strictly more nonlocal than every separable state, as
stated in the following corollary:

Corollary 1.—In any semiquantum nonlocal game Gsq,

all separable quantum states yield exactly the same payoff
}sepðGsqÞ. Moreover, a quantum state %AB is entangled if

and only if there exists a semiquantum nonlocal game Gsq,

for which }�ð%AB;GsqÞ> }sepðGsqÞ.
In other words, any entangled quantum state has a form

of nonlocality, which is ‘‘hidden’’ [11] for conventional
nonlocal games (and hence Bell inequalities), but becomes
apparent when playing semiquantum nonlocal games.
The proof of the above corollary is a direct consequence
of the fact that separable states, being the end points of the
relation ↣, are also the end points of the relation ≽sq, due

to the equivalence established by Prop. 1.
An example.—In order to illustrate the superiority of

semiquantum nonlocal games, with respect to conventional
ones, in witnessing entanglement, we describe now the
example of a semiquantum nonlocal game, in which every
entangled state gives rise to joint question-answer proba-
bility distributions that cannot be explained as coming
from any separable state, even if supplemented with an
unlimited amount of shared randomness. This is true also
for entangled LHVPOV states, which are instead com-
pletely indistinguishable from separable states, if only
conventional nonlocal games (Def. 1) are considered.
The example, directly stemming from the proof of
Proposition 1 (see [17]), is described here only in the
case of two-qubit states; we remark, however, that the
same construction can be easily carried over to any
finite-dimensional case.

In our example, S ¼ T ¼ X ¼ Y ¼ f1; 2; 3; 4g, the
auxiliary quantum systems used by the referee to encode
her questions are represented by two qubits, i.e., H A0

ffi
H B0

ffi C2, and the ‘‘question states’’ are the four tetrahe-

dral states jc 1i, jc 2i, jc 3i, and jc 4i defined by Davies
[18]. Notice that the choice of the question states is some-
what arbitrary: the important point is that their density
matrices constitute a basis for the linear space LðC2Þ.
(The definition of the probability distributions on S and
T , as well as that of the payoff function, are not necessary
for our argument and can be omitted.)

Given a two-qubit state %AB, let us consider the joint
conditional question-answer probability distribution
��ðx; yjs; t k %Þ computed as

Tr ½ðBx
A0A

� By
BB0

Þðc s
A0

� %AB � c t
B0
Þ�; (2)

where B1, B2, B3, B4 are, respectively, the four orthogonal
Bell measurements on�þ,��,�þ,��. In the process of
proving Prop. 1 (see [17]), it is also shown that, in particu-
lar, the two-qubit state %AB is entangled if and only if, for

any (possibly higher-dimensional) separable state �A0B0

and for any possible POVMs P 2 MðA0A
0;XÞ and Q 2

MðB0B0;YÞ,
��ðx; yjs; t k %Þ � Tr½ðPx

A0A
0 �Qy

B0B0
Þðc s

A0
� �A0B0 � c t

B0
Þ�:

In fact, one can easily check, following the proof of
Prop. 1, that an equality in the above equation, for some
separable state �A0B0 and some POVMs P and Q, would
imply the existence of an LOSR transformation mapping
�A0B0 into %AB, hence leading to a contradiction, due to the
fact that LOSR transformations cannot create entangled
states from separable ones. In other words, the state %AB is
entangled if and only if the joint conditional probability
distribution ��ðx; yjs; t k %Þ, computed in Eq. (2), is out of
reach for any possible separable state, even with the help of
unlimited shared randomness (represented here by the
possibility of �A0B0 being on a higher-dimensional Hilbert
space).
Multipartite states.—Before concluding, we remark

here that our approach can be straightforwardly
extended to consider multipartite LOSR transforma-
tions E:LðH A �H B �H C � � � �Þ ! LðH A0 �H B0 �
H C0 � � � �Þ of the form E¼P

i�ðiÞEi�F i�Gi���� ,
where Ei:LðH AÞ ! LðH A0 Þ, F i:LðH BÞ ! LðH B0 Þ,
Gi:LðH CÞ!LðH C0 Þ, and so on, are all CPTP maps, for
all i. This can be done by considering multipartite semi-
quantum nonlocal games, in which all the players indepen-
dently receive their ‘‘quantum questions’’ from the referee,
and by following the same arguments used to prove the
bipartite case.
Conclusions.—We showed that one quantum state can

be transformed into another by means of an LOSR proto-
col, if and only if the former is ‘‘more nonlocal’’ than the
latter, where nonlocality is quantified by means of semi-
quantum nonlocal games (Def. 5). As a by-product, we
obtained a clear-cut proof that any entangled quantum state
is always nonlocal, a fact that should be considered in light
of previous works reaching the same conclusion, although
from very different routes [11]. In order to support our
analysis and show the superiority of semiquantum nonlocal
games, with respect to conventional ones, in witnessing
entanglement, we also provided an explicit example of a
semiquantum nonlocal game, in which any entangled state
gives rise to joint question-answer probability distributions
that cannot be explained classically, even if an unlimited
amount of shared randomness is granted.
The author is grateful to Denis Rosset and Mark

M. Wilde for pointing out mistakes in a previous version.
An exchange with Antonio Acı́n and Miguel Navascués is
also gratefully acknowledged. This research was supported
by the Program for Improvement of Research Environment
for Young Researchers from Special Coordination Funds
for Promoting Science and Technology (SCF) commis-
sioned by the Ministry of Education, Culture, Sports,
Science and Technology (MEXT) of Japan.

PRL 108, 200401 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
18 MAY 2012

200401-4



*buscemi@iar.nagoya-u.ac.jp
[1] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777

(1935).
[2] J. S. Bell, Physics 1, 195 (1964); J. F. Clauser, M.A.

Horne, A. Shimony, and R.A. Holt, Phys. Rev. Lett. 23,
880 (1969).

[3] R. F.Werner, Phys. Rev. A 40, 4277 (1989); N. Gisin, Phys.
Lett. A 154, 201 (1991); R. Horodecki, P. Horodecki, and
M. Horodecki, Phys. Lett. A 200, 340 (1995).

[4] J. Barrett, Phys. Rev. A 65, 042302 (2002).
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