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Artificial gauge fields open the possibility to realize quantum many-body systems with ultracold atoms,

by engineering Hamiltonians usually associated with electronic systems. In the presence of a periodic

potential, artificial gauge fields may bring ultracold atoms closer to the quantum Hall regime. Here, we

describe a one-dimensional lattice derived purely from effective Zeeman shifts resulting from a

combination of Raman coupling and radio-frequency magnetic fields. In this lattice, the tunneling matrix

element is generally complex. We control both the amplitude and the phase of this tunneling parameter,

experimentally realizing the Peierls substitution for ultracold neutral atoms.
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Ultracold atoms subjected to artificial gauge fields can
realize phenomena usually in the domain of electronic
systems. Prime examples include the quantum Hall effect
(for Abelian gauge fields), and topological insulators (for
non-Abelian gauge fields) [1]. Many of these phenomena
are predicted to occur at extremely low temperatures, and
adding a lattice potential to an ultracold system can in-
crease the energy scales at which strongly correlated states
are expected to emerge [2,3]. Current techniques for gen-
erating periodic potentials in ultracold atom systems use
optical standing waves created with suitably polarized
counterpropagating lasers [4]. In contrast, we describe a
one-dimensional (1D) ‘‘Zeeman lattice’’ for ultracold
atoms created with a combination of radio frequency (rf)
and optical-Raman coupling fields, without any optical
standing waves. In this lattice, atoms acquire a quantum
mechanical phase as they hop from site to site, explicitly
realizing the Peierls transformation [5] in the laboratory
frame. Our approach extends existing Raman dressing
schemes [6] by simultaneously generating an artificial
gauge field and an effective lattice potential.

Optical lattices generally result from the electric dipole
interaction between an atom and the electric field of an
optical standing wave, yielding a potential VdipðrÞ /
�ð�ÞIðrÞ, where �ð�Þ is the atomic polarizability at the
laser wavelength �, and IðrÞ is the spatial intensity distri-
bution [4]. In such lattices, the natural units of momentum
and energy are given by the single photon recoil momen-
tum @kL ¼ 2�@=� and its corresponding energy EL ¼
@
2k2L=2m, where m is the atomic mass.

Quantum particles with charge q in a 1D periodic poten-

tial (here along ex) acquire a phase �j ¼ ðq=@ÞRxjþ1
xj A �

exdx upon tunneling from site j to jþ 1 in the presence of a
vector potentialA. For sufficiently strong lattice potentials,
this system is described by the tight-binding Hamiltonian

H ¼ �X

j

½t expði�jÞâyjþ1âj þ H:c:�; (1)

where âyj describes the creation of a particle at site j, and

t expði�jÞ is the complex matrix element for tunneling

between neighboring sites. Using the phases�j to represent

the effect of A is known as the Peierls substitution [5],
and for a uniform phase � the energy is EðkxÞ ¼
�2t cosð�kx=kL ��Þ, where kx is the particle’s crystal
momentum.
We realize the Peierls substitution for ultracold atoms by

synthesizing a 1D effective Zeeman lattice that allows
independent control of both t and �. Previous experiments
(a) controlled the amplitude and sign of t in driven optical
lattices [7], or, in addition, (b) controlled � by means of
rotating optical lattices [8] or Raman-assisted tunneling in
an optical superlattice [9]. Our effective Zeeman lattice
provides both a periodic potential and an artificial vector
potential in the laboratory frame.
The Zeeman lattice arises from a combination of rf and

Raman fields that simultaneously couple the spin states
fjmFigmF¼0;�1 of a 87Rb Bose-Einstein condensate (BEC)

in the F ¼ 1 ground level, which are split by @!Z [Fig. 1(a)
and 1(b)]. In the frame rotating at the rf frequency �! and
under the rotating wave approximation, the combined rf-
Raman coupling contributes a term,

Ĥ rfþRðxÞ ¼ �ðxÞ � F̂þ ĤQ; (2)

to the overall Hamiltonian, where F̂ ¼ ðF̂x; F̂y; F̂zÞ is

the F ¼ 1 angular momentum operator; � ¼ ð�rf þ
�R cosð2kLxÞ;��R sinð2kLxÞ;

ffiffiffi
2

p
�Þ= ffiffiffi

2
p

, in which �rf
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and �R are the rf and Raman coupling strengths, � ¼
�!�!Z is the detuning from Raman resonance, and

HQ ¼ ��ð@21̂� F̂2
zÞ=@ describes the quadratic Zeeman

shift. Equation (2) is the Zeeman Hamiltonian for an
effective field BeffðxÞ ¼ @�ðxÞ=gF�B, where �B is
Bohr’s magneton and gF is Landé’s g factor. This spatially
varying effective Zeeman shift produces a 1D lattice po-
tential [Fig. 1(c)]. As atoms tunnel from site to site, Beff

spatially precesses [Fig. 1(d)] and the atoms acquire a
geometrical Berry’s phase �B [10] proportional to the
enclosed solid angle. The tunneling parameters t and �,
obtained from EðkxÞ, are nontrivial functions of �. In the
limit of large Raman coupling (�R � 4EL;�rf ; �), the
Peierls phase is � ¼ �B þ 2�, where the Berry’s phase

is �B ¼ 2�mFð1� �=�Þ, with mF ¼ �1 and � ¼
ð�2

R=2þ �2Þ1=2, independent of �rf . In our experiment,
�R is not sufficiently large for this approximation to be
valid, so we instead compare our results to the numerically
computed band structure.

When �rf � �R; �; � the effective Zeeman shift

reduces to @j�j � @½�rf þ�R cosð2kLxÞ�=
ffiffiffi
2

p
, and when

�R � �rf ; � we obtain the analogous result @j�j �
@½�R þ�rf cosð2kLxÞ�=

ffiffiffi
2

p
. In both of these limits, the

larger of the two fields defines a natural quantization axis
about which the smaller field spatially modulates j�j. For
�R � �rf , this quantization axis is spatially rotating.
We experimentally characterize the lattice in three

ways: (i) we measure the effective mass m� ¼
@
2½d2EðkxÞ=dk2x��1, which in the tight-binding regime is
inversely proportional to t; (ii) we quantify the Peierls
phase � and test its robustness against small changes in
�rf ; and (iii) we investigate the diffraction of BECs from
our effective Zeeman lattice. In each case, we start with
87Rb BECs in the jF ¼ 1; mF ¼ �1i state in a crossed
optical dipole trap with frequencies ðfx; fy; fzÞ ¼
ð13; 45; 90Þ Hz [11]. In the presence of a uniform bias field
B0ey, we apply a rf magnetic field with frequency

�!=2� ¼ gF�BB0 ¼ 3:25 MHz and prepare the BEC in
the lowest energy rf-dressed state [12]. Two � ¼
790:33 nm Raman laser beams, counter-propagating along
ex and differing in frequency by �!, couple the BEC’s
internal degrees of freedom with strength�R [Fig. 1(a) and
1(b)]. The combination of rf and Raman coupling creates a
1D lattice potential along ex, the direction of momentum
exchange defined by the Raman beams.
We obtain the atoms’ effective mass m� by inducing

dipole oscillations [13–15] along ex and measuring shifts
in the oscillation frequency as a function of the coupling
strengths �R and �rf . The atoms slosh in the lattice for a
variable time �, after which we remove all coupling and
confining potentials (thus projecting the final spin-
momentum superposition into bare atomic states) and ab-
sorption image the atoms after a 28.2 ms time-of-flight
(TOF). Figure 2(a) shows bare and dressed condensates
oscillating at frequencies fx and f�, respectively [16];
Fig. 2(b) shows that the effective to bare mass ratio
m�=m ¼ ðfx=f�Þ2, as a function of �R and �rf , is in
good agreement with calculations (curves [14]). These
data provide the tunneling matrix element amplitude
t=EL ¼ ðm=m�Þ=�2 in the tight-binding regime [17].
An important characteristic of our effective Zeeman

lattice is the presence of a tunable Peierls hopping phase
�, which can be revealed through its effects on EðkxÞ and is
experimentally controlled by adjusting �z. We identify �
both by adiabatically modifying the band structure (‘‘adia-
batic method’’) and by inducing oscillations (‘‘sudden
method,’’ similar to above). Furthermore, we test its in-
sensitivity to variations in �rf with the latter method.
In the adiabatic method, we load a BEC at kx ¼ 0 and

adiabatically change �z, such that the BEC always sits at
the minimum of EðkxÞ located at kmin. The time scale for
adiabaticity is set by the modified trapping frequency f�
along the direction of the Raman beams. Once �z reaches
its final value, we remove the trapping potential and

(a) (b)

(c) (d)

FIG. 1 (color online). Effective Zeeman lattice. (a)–(b) A uni-
form magnetic field B0ey Zeeman splits the levels in the F ¼ 1

ground state manifold of 87Rb by !Z and provides a quadratic
Zeeman shift �. In conjunction with a rf magnetic field Brfex
with frequency �!, a pair of orthogonally polarized counter-
propagating Raman beams with frequencies (!;!þ�!) illu-
minates the atomic sample. The rf and Raman fields have
coupling strengths �rf and �R. (c) The spatially varying eigen-
values of ĤrfþRðxÞ (red, blue, and green curves) give rise to
our �=2 effective Zeeman lattice, as plotted @ð�rf ;�R; �Þ ¼
ð1; 10; 2ÞEL. (d) Spatial precession of BeffðxÞ (dark arrow) and
the solid angle it subtends when an atom tunnels to the nearest
neighboring site [points 1–5 in (c)]. This geometrical Berry’s
phase �B gives the Peierls phase �. Only when both dressing
fields are illuminating the atoms does the lattice potential exist;
therefore, the effective Zeeman field is, in general, not symmet-
ric about ez.
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subsequently deload all atoms into the jmF ¼ þ1i spin
state while mapping the occupied crystal momentum kx to
free-particle momentum [14]. We image this distribution
after a 13.1 ms TOF, revealing kmin. The Peierls phase,
shown as crosses in Fig. 3(a), is �=� ¼ kmin=kL.

In the sudden method, we test the robustness of the
Peierls phase � by first adiabatically loading to � ¼ ��
(the condensate sits at the edge of the Brillouin zone) and
then suddenly changing both�z and�rf [18] to new values
(changing both � and t). This results in momentum space
oscillations centered at kmin. After a time � we release the
BEC, and measure as above. We fit the crystal momentum
dynamics with kxð�Þ¼kminþ�kxcosð2��f�þ	Þ, where
�kx is the amplitude, and 	 is an overall phase shift whose
average value is 0:9ð1Þ� for these measurements [14].
Figure 3(a) (circles) shows the measured Peierls tunneling
phase as a function of �z.

Measurements from the adiabatic and sudden methods
are in good agreement with each other and their expected
values [Fig. 3(a), dashed curves], highlighting the precise
experimental control offered by our rf-Raman induced
effective Zeeman lattice. This agreement also demon-
strates the robustness of our engineered Hamiltonian to
deliberate variations in �rf of up to 0:25EL, as was antici-
pated by the absence of �rf in the large �R expression for
�. We find that the hopping phase is unaltered by small
changes in �rf even when t changes significantly.

The sloshing amplitude j�kxj is displayed in Fig. 3(b).
For large initial j�kxj (shaded region) we observe the
depletion of BEC atoms and a strong damping of the center
of mass oscillation (evident from the departure of the

oscillation amplitude from the value predicted by single-
particle arguments). Both of these effects are signatures of
an energetic instability in the dynamics of a BEC moving
in a combined harmonic plus periodic potential [19]. The
region of strong damping observed in our system coincides
with the expected range �kx > 0:5kL (shaded gray region)
of this dynamical instability [19]. Figure 3(c) displays the
tunneling amplitude t, obtained from f�. For comparison, a
sinusoidal lattice would require a depth of V0 � 8EL to
give similar parameters.
Having discussed the behavior of atoms in the lattice’s

lowest band, we now explore the full lattice by suddenly
turning it on, diabatically projecting a ground state BEC
into higher bands. At the beginning of such a pulse, an
ordinary periodic potential would first spatially modulate
the BEC’s phase before the atoms begin to move [20]; our
effective Zeeman lattice induces such a modulation but in a
spin-dependent manner. We focus on the �R � �rf and
�R � �rf tight-binding regimes and investigate the spin
and spatial structure of our lattice. Our data extends well
beyond the short-time phase modulation regime.
In the absence of either Raman or rf coupling, there is no

lattice. As indicated in Fig. 4(a), we use two different
methods to introduce our lattice on an initial spatially
uniform state: (i) starting with a rf-dressed state (with
kx ¼ 0), we suddenly (ton < 1 �s) turn on the Raman

(a)

(b)

FIG. 2 (color online). Effective mass. (a) Comparison of the
oscillations of a BEC in the jmF ¼ �1i state to those in a rf-
Raman-dressed BEC [@�R ¼ 12:4ð9Þ EL and @�rf ¼ 2:04ð6Þ
EL]. The curves are fits to a sinusoid from which we obtain
fx ¼ 14:0ð1Þ Hz and f� ¼ 5:3ð1Þ Hz, thus m�=m ¼ 7:0ð3Þ and
t ¼ 0:015ð1ÞEL. (b) Measurements of m�=m as a function of�R

and �rf . The curves depict the expected m�=m ratio.

(a)

(b)

(c)

FIG. 3 (color online). Peierls transformation. (a) Peierls phase
� measured using adiabatic (crosses) and sudden (circles)
changes of �z. Vertical lines denote the first Brillouin zone.
(b) Sloshing amplitude after suddenly changing �z. We ob-
served strong damping of oscillations in the region shaded in
gray. (c) Tunneling amplitude t measured from oscillation fre-
quency. The rf coupling was modulated as a function of �z to
test the robustness of the Peierls phase �. The Raman coupling
was held at @�R ¼ 10:0ð8ÞEL. The dashed curves correspond to
the expected behavior calculated from HrfþR, and the pink bands
arise from the experimental uncertainty in �R.
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beams; or (ii) starting with a Raman-dressed state [12]
(a superposition of jmF ¼ 0; kx ¼ 0i and jmF ¼ �1; kx 	
2kLi), we suddenly turn on the rf field.

After holding the lattice on for a time �pulse, we suddenly

turn off the rf and Raman fields, together with the confining
potential. The atoms are projected onto the bare spin-
momentum basis and separate in TOF in the presence of
a magnetic field gradient (along ez), allowing us to resolve
their spin and momentum components.

We observe a detectable population in states with mo-
menta up to jkxj 
 4kL [Fig. 4(b)]. We perform such
experiments for �R=�rf � 3 and 5. We minimize
the effects of interactions by working with small BECs
(� 9� 104 atoms). Figures 4(c) and 4(d) show the fraction
of atoms in each diffracted order evolving with time. We
observe multiple revivals of the initial spin-momentum
state and find symmetry in the population dynamics of
spin-momentum states with opposite momentum and op-
posite spin. The curves represent fits to the populations in all
spin-momentum components. The parameters from the fits
are all within 10% for our calibrated values, demonstrating
that the spin-momentumdynamics arewell described by the
unitary evolution of the initial states under HrfþR [14].

Based on this technique for controlling the Peierls phase
and inspired by recent proposals for creating flux lattices
[1,21], we now describe how this method might be ex-
tended to create a lattice with zero net flux that is topo-
logically equivalent to the Hofstadter model with flux
density n� ¼ 1=3 per plaquette. Because the hopping
phase is only defined modulo 2� (thus n� is only defined
modulo 1), a uniform magnetic field with n� ¼ 1=2 is
equivalent to a staggered field with n� ¼ �1=2. In the

same spirit, a magnetic field staggered along ez with flux
density ( . . . ; 1=3; 1=3;�2=3; . . . ; ) has zero net flux yet is
equivalent to a uniform field with n� ¼ 1=3. These fields
could be generated by the Peierls phases�yðjx; jzÞ ¼ 0 and

�xðjx; jzÞ ¼ �ð2�=3Þmodðjz; 3Þ. Reminiscent of the flux

(a)

(b)

(c)

(d)

FIG. 4 (color online). BEC diffraction from the effective Zeeman lattice. (a) Starting with a rf-dressed (Raman-dressed) state, we
suddenly turn on the Raman (rf) field for a variable time �pulse. (b) Using TOF absorption images of the projected spin-momentum

distributions, we count the number of atoms in each diffracted order and determine its fractional population. Panels (c) and (d) depict
the time evolution of these fractions. The curves are fits to the data, calculated from HrfþR. The fit parameters are (c) rf dressed
@ð�rf ;�R;�zÞ ¼ ð3:57; 11:49;�0:04ÞEL and (d) Raman dressed @ð�rf ;�R;�zÞ ¼ ð3:06; 15:14; 0:08ÞEL.

(a) (b)

FIG. 5 (color online). Generation of the 1=3 flux Hofstadter
model. (a) Schematic showing effective 1=3 flux per plaquette
modulo 1. The color scale indicates the effective phase gradient
induced by the vector lattice. Atoms acquire phases as they hop
along ex, in contrast, no phase is acquired by hopping along ez
(see loop). (b) Region (in black) where the Chern numbers in the
lowest three bands are ð1;�2; 1Þ, equivalent to the n� ¼ 1=3
Hofstadter model as a function of the period 3a=2 vector lattice’s
strength. The horizontal axis is its vector contribution to �z and
the vertical is its scalar contribution to the overall lattice poten-
tial. The inclusion of a state-dependent potential spatially mod-
ulates the energy in the lowest dressed band (including the effect
of the scalar potential arising from the adiabatic approximation),
resulting in an unwanted spatial staggering of the lattice poten-
tial. The flat band condition corresponds to the case when the
scalar light shift cancels this unwanted modulation.
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rectification mechanism proposed in Ref. [22], this con-
figuration can be created in our system by adding two
standing waves along ez (normal to the Raman lasers): a
state-independent lattice with period a localizing the atoms
to specific lattice sites (e.g., from a retro-reflected 532 nm
laser), and a state-dependent ‘‘vector’’ lattice with a period
3a=2 sinusoidally modulating �z as a function of z (e.g.,
from an additional 790 nm laser, nearly counterpropagat-
ing). Figure 5(a) shows that with a suitable relative phase
between the standing waves, the fluxes along ez repeat with
the pattern (� 2=3; 4=3;�2=3), giving the desired flux per
plaquette. To verify this heuristic interpretation, we nu-
merically solve the 2D band structure (for exact parameters
see [14]), and as shown in Fig. 5(b), we confirm that for a
wide range of parameters, the three lowest bands are
described by the same Chern numbers [23] as are those
of the n� ¼ 1=3 Hofstadter model: (1;�2; 1).

We realized a 1D lattice potential for ultracold atoms
using only rf and Raman transitions, in which the tunneling
matrix element is, in general, complex. This work consti-
tutes a first step toward realizing flux lattices [21], in which
the physics of charged particles in strong magnetic fields
can be simulated. The tunability of the Peierls phase
achieved with our rf-Raman lattice would allow the obser-
vation of nonlinear effects of ultracold atoms in 1D peri-
odic potentials, such as atomic density modulations with
periodicity larger than the lattice spacing [24].
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Note added in proof.—Recently we learned of a com-
plementary experimental technique to manipulate the
Peierls phase in driven optical lattices [25].
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[25] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J.

Simonet, A. Eckardt, M. Lewenstein, K. Sengstock, and
P. Windpassinger Phys. Rev. Lett. 108, 225304 (2012).

PRL 108, 225303 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
1 JUNE 2012

225303-5

http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1103/PhysRevLett.94.086803
http://dx.doi.org/10.1103/PhysRevLett.94.086803
http://dx.doi.org/10.1103/PhysRevA.76.023613
http://dx.doi.org/10.1016/S1049-250X(08)60186-X
http://dx.doi.org/10.1016/S1049-250X(08)60186-X
http://dx.doi.org/10.1103/PhysRevB.14.2239
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1142/S0219749911007150
http://dx.doi.org/10.1142/S0219749911007150
http://dx.doi.org/10.1103/PhysRevLett.104.050404
http://dx.doi.org/10.1103/PhysRevLett.104.050404
http://dx.doi.org/10.1103/PhysRevLett.107.255301
http://dx.doi.org/10.1103/PhysRevLett.107.255301
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1103/PhysRevLett.102.130401
http://dx.doi.org/10.1038/nphys1954
http://dx.doi.org/10.1038/nphys1954
http://link.aps.org/supplemental/10.1103/PhysRevLett.108.225303
http://link.aps.org/supplemental/10.1103/PhysRevLett.108.225303
http://arXiv.org/abs/1201.6018v1
http://dx.doi.org/10.1103/PhysRevLett.86.4447
http://dx.doi.org/10.1103/PhysRevLett.86.4447
http://dx.doi.org/10.1103/PhysRevLett.83.284
http://dx.doi.org/10.1103/PhysRevLett.106.175301
http://dx.doi.org/10.1088/1367-2630/12/3/033007
http://dx.doi.org/10.1088/1367-2630/12/3/033007
http://dx.doi.org/10.1143/JPSJ.74.1674
http://dx.doi.org/10.1143/JPSJ.74.1674
http://dx.doi.org/10.1103/PhysRevA.69.043604

