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The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-

dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J þ 1)-dimensional

Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of

independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test

charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the

Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings.

Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole

moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric

formulation of the quantum dynamics is presented and its application to systems with exotic ordering such

as spin nematics is outlined.
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The concept of geometric phase associated with a cyclic
quantum evolution [1,2] has by now become a central
unifying concept of quantum mechanics [3–5]. Its impor-
tance stems from the fact that its local expression, the
geometric curvature, controls the quantum dynamics.

The prototype of geometric phase is that of a spin 1=2: in
this case, it can be thought of as the Aharonov-Bohm (AB)
phase of a unit electrical charge moving on the Bloch
sphere in the field of a Dirac monopole of unit magnetic
charge located at the center of the Bloch sphere [1]. For a
spin-J system evolving within the manifold of coherent
states (CSs) (i.e., quasiclassical states), this interpretation
goes over straightforwardly, the electric charge being now
of magnitude 2J [1]. For a spin-J system in an arbitrary
quantum state, except for the specific case of a quantum
evolution consisting only of global rotations (i.e., due to a,
possibly time-dependent, magnetic field) [6], the geomet-
ric phase associated with an arbitrary cyclic evolution of a
spin J system [7] does not seem to be amenable to any
physically appealing AB-like interpretation, which is
somehow unsatisfactory.

In the present Letter, I propose a novel theory of the
geometric phase of spin systems, based upon a mapping
onto a (fictitious) many-body system. From the latter
emerges quite naturally a novel AB-like, physically trans-
parent, understanding of the geometric phase of spin sys-
tems. Since any system with a finite-dimensional Hilbert
space of dimension 2J þ 1 can be thought of as a spin-J
system, the present study actually holds, at least formally,
for any finite quantum system.

Since any two state vectors j�ðJÞ
1 i and j�ðJÞ

2 i of the

spin-J Hilbert space H ðJÞ ¼ C2Jþ1 � f0g satisfying

j�ðJÞ
2 i ¼ cj�ðJÞ

1 i (with c 2 C, c � 0) yield the same ex-

pectation value for any observable, they represent the same

physical state and belong to the same equivalence class

(j�ðJÞ
2 i � j�ðJÞ

1 i); thus the manifold of physical states (pro-

jective Hilbert space) is the quotient space of equivalence

classes P ðJÞ � H ðJÞ=� ¼ CP2J [2]. As in Ref. [7], the
approach to be used here is purely geometric and relies

upon Majorana’s stellar representation [8] for P ðJÞ.
Majorana’s representation is most easily understood by
noticing that spin-J states can be obtained as fully symme-
trized states of a system of 2J spins 1=2 [9]. This idea is at
the heart of the Schwinger boson (SB) representation [10],
in which the spin-1=2 CS pointing along the direction n̂ of

spherical angles � and ’ is jn̂ð1=2Þi � âyn̂j;i, with âyn̂ �
cosð�2Þây" þ sinð�2Þei’ây# . Let us pick 2J (non-necessarily

distinct) unit vectors fû1; . . . ; û2Jg � U, and form the state

j�ðJÞ
U i � 1ffiffiffiffiffiffiffiffi

ð2JÞ!
p ðQ2J

i¼1 â
y
�ûi

Þj;i. Obviously, being a super-

position of states with 2J SBs, such a state is a spin-J state.

In particular, the states jn̂ðJÞi � 1ffiffiffiffiffiffiffiffi
ð2JÞ!

p ðâyn̂Þ2Jj;i are the

spin-J CSs [11]; their scalar product is given by

hn̂ðJÞ
1 jn̂ðJÞ

2 i ¼ ð1þn̂1�n̂2

2 ÞJeiJ�ðẑ;n̂1;n̂2Þ, where �ðẑ; n̂1; n̂2Þ is

the oriented area of the spherical triangle (ẑ, n̂1, n̂2), and

they satisfy the following resolution of unity: 1J � 2Jþ1
4� �R

S2 d
2n̂jn̂ðJÞihn̂ðJÞj. The rotated SB creation and annihila-

tion operators satisfy the commutation relations:

½ân̂; ân̂0 � ¼ ½âyn̂; âyn̂0 � ¼ 0 and ½ân̂; âyn̂0 � ¼ hn̂ð1=2Þjn̂0ð1=2Þi.
Let us introduce the CS representation �ðJÞ

U ðn̂Þ �
hn̂ðJÞj�ðJÞ

U i, which is a wave function over the sphere S2,

with probability distribution QðJÞ
U ðn̂Þ � j�ðJÞ

U ðn̂Þj2 (Husimi

function). Simple algebraic manipulations yield�ðJÞ
U ðn̂Þ ¼Q

2J
i¼1½1�n̂�ûi

2 ei�ðẑ;n̂;�ûiÞ�1=2. Conversely, using the decom-

position in the familiar jJMi basis, one sees that a

generic spin-J state vector j�ðJÞi can be expressed as
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j�ðJÞi ¼ P�ðây" ; ây# Þj;i, where P�ðây" ; ây# Þ is a homoge-

nous polynomial of degree 2J of ây" and ây# , which can be

factorized (up to an unimportant prefactor) in the above

form j�ðJÞ
U iwith a unique multisetU (fundamental theorem

of algebra). Thus, P ðJÞ can be univocally parameterized by
the constellationU of 2JMajorana stars (MSs) (zeros ûi of

the Husimi function), and j�ðJÞ
U i can be taken as a fiducial

state in H ðJÞ to describe P ðJÞ. Addition or removal of n
stars to/from a given spin-J constellation generates a state
of spin (J þ n=2) or (J � n=2), respectively. While the SB
formalism was inspired by Majorana’s representation [12],
the underlying geometric aspects have not been fully ex-
plored so far; to carry out this task is one of the aims of the
present Letter.

Noticing that the two-dimensional (2D) Coulomb inter-
action on the sphere is ~Vðû1; û2Þ ¼ � lnðd12Þ, where
2d12 � 2sin2ð�12=2Þ ¼ 1� û1 � û2 is the chordal distance

between û1 and û2 [13], and writing QðJÞ
U ðn̂Þ ¼

exp½� ~� ~UUðn̂Þ�, with ~� � 1 and ~UUðn̂Þ � P2J
i¼1

~Vðn̂; ûiÞ,
we can interpret the (rescaled) norm of j�ðJÞ

U i,

~ZðUÞ � h�ðJÞ
U j�ðJÞ

U i
2J þ 1

¼ 1

4�

Z
S2
d2n̂QðJÞ

U ðn̂Þ

¼ 1

4�

Z
S2
d2n̂ exp½� ~� ~UUðn̂Þ�; (1)

as the (fictitious) partition function, at inverse temperature
~� � 1, of a classical gas of independent particles [of

density QðJÞ
� ðn̂Þ] living on the sphere and interacting via

the 2D spherical Coulomb repulsion with 2J fixed test
charges located at the ûi’s. The corresponding fictitious

free energy, ~FðUÞ � � ~��1 ln ~ZðUÞ, expresses a fictitious
indirect interaction among the MSs, mediated by the gas

particles in thermal equilibrium at temperature ~��1; we
thus obtain a mapping of a spin-J quantum state onto a
2J-body classical system [14]. The partition function can
be expressed in terms of the pairwise chordal distances
between the MSs, 2dij � 1� ûi � ûj, as [15]

~ZðUÞ ¼ 1

2J þ 1

X½J�
n¼0

�
ð�1Þn ð2J � nÞ!

ð2JÞ! DðJ;nÞ
U

�
; (2)

with ½J� � J (½J� � J � 1
2 ) for 2J even (2J odd), and

where the expression of DðJ;nÞ
U in terms of diagrams is

explained in Fig. 1.
Let us now show how the expectation value of the

various multipole moments can be expressed in terms of
the MSs. They are obtained from the expectation values of

the irreducible spherical tensor operators Ŷm
l ðJÞ, which in

turn have the following P representation :

Ŷ m
l ðJÞ ¼

ð2J þ 1þ lÞ!
ð2J þ 1Þ!2l

2J þ 1

4�

Z
S2
d2n̂jn̂ðJÞiYm

l ðn̂Þhn̂ðJÞj:
(3)

For the expectation values of the dipole moment Ĵ� and the

quadrupole moment Q̂�� � Ĵ�Ĵ�þĴ�Ĵ�
2 � JðJþ1Þ

3 ��� (where

�; �; . . . label the Cartesian axes), this yields

hĴ�i ¼ ðJ þ 1Þhn̂�i; (4a)

hQ̂��i ¼ ðJ þ 1Þ
�
J þ 3

2

��
hn̂�n̂�i �

���

3

�
; (4b)

where

hfðn̂Þi �
R
S2 d

2n̂fðn̂ÞQðJÞ
U ðn̂ÞR

S2 d
2n̂QðJÞ

U ðn̂Þ : (5)

To calculate the averages hn̂�i and hn̂�n̂�i, I remark that if

we form the spin-(J þ 1=2) state U0 obtained from the
spin-J state U by ‘‘adding’’ the star û0, and the spin-
(J þ 1) state U00 obtained by adding one further star û00,
the corresponding fictitious free energies are given by

~FðU0Þ ¼ ~FðUÞ þ ~Fð1=2Þ � ln½1� û0�hn̂�i� (6a)

~FðU00Þ ¼ ~FðUÞ þ 2 ~Fð1=2Þ
� ln½1� ðû0� þ û00�Þhn̂�i þ û0�û00�hn̂�n̂�i�; (6b)

where ~Fð1=2Þ � ln2 (here and further below, Einstein’s
convention of summation over repeated indices is used,
unless explicitly specified). Thus we see that we can obtain
the dipole and quadrupole moments by adding 1 or 2
auxiliary stars, respectively, from the variation of the free
energy as these auxiliary stars are moved around the
sphere. A careful but straightforward calculation yields:

FIG. 1. Typical diagrams used to compute DðJ;nÞ
U (a), DðJ;nÞ

U� (b),

and DðJ;nÞ
U�� (c). The solid dots represent the MSs (labeled from 1

to 2J), the open dots (labeled �; �; . . . ) represent the auxiliary
stars used to compute the multipole moments. The rules are:
(i) draw all possible distinct diagrams with n pairing links (each
dot, solid or open, may be linked only once in a given diagram);
(ii) calculate the contribution of each diagram as indicated
below, and then sum over all diagrams; (iii) an unlinked solid
dot yields a factor 1; (iv) an unlinked open dot yields a factor 0;
(v) a link between 2 solid dots i and j yields a factor dij; (vi) a

link between a solid dot i and an open dot � yields a factor ûi�;

(vii) a link between 2 open dots � and � yields a factor �2���.

The diagrams (a), (b), (c) shown here yield the contributions

d12d45, û5�d23d46, and û3�û6� to Dð3;2Þ
U , Dð3;3Þ

U� , and Dð3;2Þ
U��,

respectively.
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hn̂�i¼ 1

2ðJþ1Þ
P½Jþ1=2�

n¼1 ð�1Þnð2Jþ1�nÞ!DðJ;nÞ
U�P½J�

n¼0ð�1Þnð2J�nÞ!DðJ;nÞ
U

; (7a)

hn̂�n̂�i¼ 1

2ðJþ1Þð2Jþ3Þ
P½Jþ1�

n¼1 ð�1Þnð2Jþ2�nÞ!DðJ;nÞ
U��P½J�

n¼0ð�1Þnð2J�nÞ!DðJ;nÞ
U

;

(7b)

where the expressions of DðJ;nÞ
U� and DðJ;nÞ

U�� in terms of

diagrams are given in Fig. 1. For example, the spin-1 dipole
and quadrupole moments are, respectively,

hĴ�i ¼ � û1� þ û2�
2� d12

; (8a)

hQ̂��i ¼ 1

2� d12

�
û1�û2� þ û2�û1�

2
� û1 � û2

���

3

�
: (8b)

The extension of this procedure to higher-order multipole
moments is straightforward. In turn, the method presented
here allows us to express, in terms of the MSs, the expec-
tation value HðUÞ of the Hamiltonian and its derivatives
@HðUÞ
@ûi

, which will be used further below to describe the

quantum dynamics.
Let us now come to the geometric phase and the quan-

tum metric. The geometric phase acquired as the system is

parallel-transported along a closed circuit C in P ðJÞ is given
by [1,2]

�B ¼
I
C
A � dU � X2J

i¼1

I
C
ai � dûi (9a)

¼ 1

2

X2J
i;j¼1

X2
�;�¼1

Z
Sð@S¼CÞ

f��ij dû�i ^ dû�j ; (9b)

with

a�i � i

2
ð ~@û�i � @Q û�i Þ lnh�

ðJÞ
U j�ðJÞ

U i; (10a)

f��ij � @û�i a
�
j � @û�j

a�i ¼ �2 Imðh��ij Þ; (10b)

h��ij � @Q û�i
~@û�j

lnh�ðJÞ
U j�ðJÞ

U i; (10c)

where @Q ( ~@) indicates derivative of the bra h�ðJÞ
U j (ket

j�ðJÞ
U i) only. In the above equations, �;� ¼ 1; 2 label

some spherical coordinates for the MSs, with the tangent
unit vectors ê1i and ê

2
i ¼ ûi � ê1i . In going from Eq. (9a) to

Eq. (9b), Stokes’ theorem has been used, and S is an
oriented surface bounded by the oriented path C. Here,
a�i and f��ij are, respectively, the (gauge-dependent)

Berry connection and the (gauge-independent) Berry cur-
vature tensor; they have the physical meaning of a ’’vector

potential’’ and of a ’’flux density,’’ respectively, in P ðJÞ.
The other important geometric structure is the quantum
metric (Fubini-Study metric), corresponding to a distance

between j�i and j�i defined as DFSð�;�Þ �

2 arccosð jh�j�ij
h�j�i1=2h�j�i1=2Þ, whose infinitesimal expression is

ds2 ¼ g��ij dû�i dû
�
j , with metric tensor g��ij ¼ 4Reðh��ij Þ

[17].
The direct calculation of the geometric phase [7] is

complicated because of the need of taking care of the
commutation relations among SB operators, yielding
physically obscure results. This difficulty can be overcome
by inserting the CS resolution of unity between bras and
kets in Eqs. (10a) and (10c), and, after some algebraic

manipulations, one obtains ai ¼ h~aiðn̂Þi, where ~aiðn̂Þ �
�1
2 ð ẑ�ûi

1�ẑ�ûi
� n̂�ûi

1�n̂�ûi
Þ is readily seen to be the vector poten-

tial, at ûi, due to a (unit flux) Dirac string entering the
sphere along the z axis and exiting at n̂. This means that the
particles of our fictitious classical gas actually carry a
Dirac string; thus the MSs are surrounded by a flux density
(of total flux equal to that of a Dirac monopole of unit

magnetic charge) proportional to the gas density QðJÞ
U ðn̂Þ.

The geometric phase is then naturally interpreted as the
total AB phase acquired by the MSs as they perform a
cyclic motion on the sphere. The most salient feature of
this novel interpretation is the ’’fluid’’ character of the flux
density, which results from the Coulomb repulsion be-
tween the flux carrying gas particles and the MSs. For a
CS circuit, Berry’s result [1] is recovered, albeit with a
different AB-like interpretation. Skipping technical alge-
braic details, the final expression for the Berry connection
is (no Einstein convention here)

ai ¼ �1

2

�
ẑ� ûi

1� ẑ � ûi

�
�

n̂

1� n̂ � ûi

�
� ûi

�
(11a)

¼ �1

2

�
ẑ� ûi

1� ẑ � ûi

� hn̂i0i � ûi

1� hn̂i0i � ûi

�
(11b)

¼ �1

2

�
ẑ� ûi

1� ẑ � ûi

� @ûi
~F� ûi

�
: (11c)

In Eq. (11b), the notation hfðn̂Þi0i indicates that the average
is taken for the spin-(J � 1=2) state obtained by removing
the star ûi from the Majorana constellation of the spin-J
state U; similarly hfðn̂Þi0ij, to be used further below, in-

dicates the average taken over the spin-(J � 1) obtained by
removing the two stars ûi and ûj. The first term in the

above equations corresponds to the uniform flux density of
a Dirac monopole, while the second one corresponds to the
nonuniform part (with zero average) of the flux density.
The metric and Berry curvature tensors are obtained in a

similar manner. For the former, one gets [no Einstein
convention in Eqs. (12a)–(12c), (13), and (14)]

g��ij ¼ �ij��� þ ê�i � @2 ~F

@ûi � @ûj

� ê�j

þ J ê�i � @2 ~F

@ûi � @ûj

� J ê�j ; (12a)

¼ ê�i � ��dij � ê�j þ J ê�i � ��dij � J ê�j ; (12b)
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with J ê1i � ê2i , J ê2i � �ê1i , and

��dij �
�

n̂

1� ûi � n̂ � n̂

1� ûj � n̂
�

�
�

n̂

1� ûi � n̂
�
�
�

n̂

1� ûj � n̂
�
: (12c)

For i � j, this yields

��dij ¼
hn̂ � n̂i0ij

1� ðûi þ ûjÞ � hn̂i0ij þ ûi � hn̂ � n̂i0ij � ûj

� hn̂i0i
1� hn̂i0i � ûi

� hn̂i0j
1� hn̂i0j � ûj

; (13)

whereas for i ¼ j, one gets

g��ii ¼ ���

1� ðhn̂i0iÞ2
ð1� hn̂i0i � ûiÞ2

: (14)

The Berry curvature tensor is obtained from the metric
tensor from the following identities

�2f12ij ¼ 2f21ij ¼ g11ij ¼ g22ij ; (15a)

2f11ij ¼ 2f22ij ¼ g12ij ¼ �g21ij : (15b)

Mathematically, this follows from the Kählerian nature of
the projective Hilbert space [5].

To describe the quantum dynamics, I write down

Schrödinger’s equation for the state vector jc ðtÞi �
ei’ðtÞ j�UðtÞi

h�UðtÞj�UðtÞi1=2 , which yields _’ ¼ �HðUÞ þA � _U (set-

ting @ � 1); the latter result is nothing else but the infini-
tesimal version of the Aharonov-Anandan decomposition
of the total phase variation into the dynamical and geomet-
ric terms [2]. It is not gauge invariant with respect to a
change of the phase choice for the fiducial states j�Ui. In
order to obtain a gauge invariant equation of motion, we
use the fact that, due to the unitarity of Hamiltonian
evolution, the relative phase of any two (nonorthogonal)
states, defined as ’12ðtÞ � arghc 1ðtÞjc 2ðtÞi, is time-
independent. Doing this for states at U and Uþ �U, one
finally obtains

f��ij @tû
�
j ¼ @û�i HðUÞ: (16)

The above equation has the form of the classical equation
of motion of a system of 2J coupled particles evolving on a
spherical phase space, with symplectic form given by
1
2 f

��
ij dû�i ^ dû�j , and a Hamilton function given by HðUÞ

[18]. An alternative (equivalent) formulation of the spin
dynamics in terms of the Majorana stars was given earlier
by Lebœuf [19]; however, the symplectic-Hamiltonian
nature of the dynamics is displayed more transparently in
the present formulation. I note that the 2J particles are
coupled to each other, not only dynamically through the
Hamilton function, but also kinematically via the symplec-
tic form. Equation (16) is the quantummechanical counter-

part of the Landau-Lifshitz equation for spin dynamics
[20], which we would recover if we would restrict our
description to (quasiclassical) CSs. For quantum spin sys-
tems, such as molecular magnets [21], the latter is clearly
inadequate, and a fully quantum description as given in
Eq. (16) is necessary.
Finally, I briefly address the question of systems of

interacting spins in magnetically ordered systems. The
usual treatment, spin-wave theory, amounts to using a
variational wave-function given as a tensorial product of
CSs with site-dependent unit vectors n̂ðRi; tÞ, and solving
the linearized coupled Landau-Lifshitz equations. This
approach is clearly not adequate for systems with exotic
(e.g., quadrupole or higher-multipole) ordering such as
spin nematics [22], and the effective field theory proposed
for spin nematics [23] applies only to spin-1 systems and
cannot be extended to systems with spin J > 1. This
clearly calls for a more general theory of spin nematics. I
argue here that the most natural description of such sys-
tems is the geometric description offered by the Majorana
representation. It consists in setting up a quantum field
theory based upon Majorana’s constellations instead of the
quasiclassical CSs; one thus obtains a path-integral theory
for the 2J coupled Oð3Þ fields ûi. This theory will be
developed in detail in a forthcoming paper.
I gratefully acknowledge helpful discussions and/or cor-

respondence with Robert Whitney, Efim Kats, and John
Hannay.
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