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Role of Bose Statistics in Crystallization and Quantum Jamming
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The indistinguishability of particles is a crucial factor destabilizing crystalline order in Bose systems.
We describe this effect in terms of damped quasiparticle modes and in the dual language of Feynman
paths, and illustrate it by first-principles simulations of dipolar bosons and bulk condensed “He. The first
major implication is that, contrary to conventional wisdom, zero-point motion alone cannot prevent “*He
crystallization at near zero pressure. Second, Bose statistics leads to quantum jamming at finite
temperature, dramatically enhancing the metastability of superfluid glasses. Only studies of indistinguish-

able particles can reliably address these issues.
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Among naturally occurring condensed matter systems,
helium is the only known substance that escapes crystal-
lization at low temperature (7)), remaining a liquid all the
way down to 7 = 0 under the pressure of its own vapor.
The standard argument to explain the failure of liquid
helium to form a crystal at low temperature is based on
its low atomic mass, and consequently large zero-point
motion, and the weakness of the interatomic potential [1].

Superficially, this contention appears plausible; indeed,
in the crystal phase of helium (stable at moderate pressure)
the ratio between the zero-point atomic displacement
and the interatomic distance a, an analog of Lindemann
ratio [2] at zero temperature, is almost 4 times greater than
in all other known solids. The standard argument makes no
reference at all to Bose statistics, and in fact the assump-
tion is usually made that quantitatively accurate theoretical
predictions of liquid-solid phase boundaries for Bose sys-
tems can be obtained by neglecting quantum statistics
altogether, i.e., regarding particles as distinguishable.

Several reasons can be put forward to justify this ap-
proximation, which simplifies some calculations, e.g.,
those based on quantum Monte Carlo simulations [3].
For one thing, solid helium features many of the properties
that are typical of other, less quantal solids, most notably
an exponentially small energy scale (nearly 5 orders of
magnitude smaller than vibration energies) for tunneling
exchange of two (and more) atoms [4,5]. In other words,
even in solid helium atoms are fairly localized at their
equilibrium (lattice) positions. Quantitatively, the energy
of a crystal of “He atoms is very nearly identical to that of a
crystal made of distinguishable particles (henceforth re-
ferred to as Boltzmannons) with the same mass and inter-
atomic potential of “He atoms [6]. Thermal melting of
solids occurs when fluctuations around equilibrium points,
characterized by the rms excursion ur, reach a certain
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fraction of the interatomic distance a, that is when the
Lindemann ratio u7/a is large enough (for most materials,
this means above ~0.1). This effect has little to do with
quantum statistics and occurs in the same way in a system
of Boltzmannons.

Finally, as was first noted by Feynman, there is abso-
lutely no difference between the ground state wave func-
tion of an assembly of bosons, and one of corresponding
distinguishable particles. For, the bosonic ground state
wave function is nodeless, and Boltzmannons are allowed
to be in the same state by the symmetry of the Hamiltonian
with respect to particle label [7].

In this Letter, we argue that any attempt to determine the
phase diagram of a Bose system neglecting quantum statis-
tics is fundamentally flawed, prone to both large quantita-
tive and qualitative errors. Specifically, we show that, unlike
their Bose counterpart, distinguishable particle systems
undergo thermocrystallization above a liquid ground state,
in a wide region of the phase diagram, as a result of a
mechanism akin to that of the Pomeranchuk effect in 3He.
We establish this conclusion through numerical simula-
tions, of which we show results for two representative
Bose systems, namely, a two-dimensional assembly of di-
poles interacting purely repulsively, and three-dimensional
condensed “He. We furnish strong evidence that, contrary to
a widely held belief, over a broad range of parameters the
destabilization of a crystalline phase is triggered by effects
related to Bose statistics, i.e., exchanges of indistinguish-
able particles, not by the conceptually distinct zero-point
motion alone. In particular, we predict that 4He would not
escape crystallization at low pressure and finite tempera-
ture, were *He atoms truly ““distinguishable.”

We provide a simple theoretical framework for thermoc-
rystallization, making use of two alternative, complemen-
tary descriptions, the first is based on free-energy
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considerations for a system of damped quasiparticles, the
second is formulated in the dual language of Feynman
paths in imaginary time (i.e., world lines).

A far-reaching implication of the importance of quan-
tum exchanges is the existence of a superfluid glass (super-
glass) metastable phase, with a long lifetime set by the
entanglement of particle world lines involved in macro-
scopic exchange cycles. Quantum jamming can take place
in a Bose system, due to resilient entanglement of indis-
tinguishable particles, an effect that is entirely missed in
studies of Boltzmannons. In a Feynman path-integral pic-
ture, one can think of entangled world lines that cannot be
easily disentangled through a series of single-particle
displacements.

We begin by showing two examples of thermocrystalli-
zation of Boltzmannons, observed in computer simulations
over a broad range of thermodynamic parameters.
Specifically, we describe simulation results for two repre-
sentative Bose systems with purely repulsive and Lennard-
Jones type interaction potentials. First, we consider a two-
dimensional assembly of bosons interacting via a pairwise,
purely repulsive dipolar potential v(r) = D/r>, where D is
a constant. Such a many-body system can be realized in the
laboratory by means of cold polar molecules [8], and its
ground state phase diagram has been the subject of several
theoretical studies [9,10]. The Hamiltonian of the system
in reduced units is

~ 1 &
H--lywesto 0

i=1 i>j Tij

where r;; is the distance between particles i and j. The unit
of length is ry = mD (here and below i = ki = 1), while
€y = D/r} = 1/mr} is the energy unit. The relevant ther-
modynamic parameter, besides the temperature, is the
density p = 1/a®. The system is enclosed in a cell with
periodic boundary conditions and simulated with the worm
algorithm in the path-integral representation [11,12].

Figure 1 shows simulation snapshots of equilibrium
particle world lines, projected onto the xy plane, for a
system of N = 144 particles, at T = 200€, and a =
0.067. Although the simulation for Boltzmannons is started
with particles at random positions inside a square cell, the
system spontaneously forms an ordered, triangular ar-
rangement, clearly identifiable in the left panel of Fig. 1.
Fuzzy “clouds” provide a rough measure of quantum
delocalization arising from zero-point motion which is
significant in this solid, as quantitatively expressed by the
large value (~ 0.37) of the Lindemann ratio, far above the
conventional threshold for (thermal) melting, and close to
that of the bec *He [13]. We have observed crystallization
of Boltzmannons down to a temperature 7 = 50¢.

The physical situation is qualitatively different if
Bose statistics is taken fully into account, as shown in
the right panel of Fig. 1. In this case, although the system
is initially prepared on a regular triangular lattice (hence
the rectangular simulation cell), particle world lines

FIG. 1 (color online). Snapshots of particle world lines, pro-
jected onto the xy plane, for a two-dimensional system of dipolar
bosons, at temperature T = 200¢€, and interparticle distance a =
0.067 (see text). The size of each fuzzy ‘“cloud” is a rough
measure of quantum delocalization associated with zero-point
motion. Left panel shows an equilibrium configuration of
Boltzmannons, right panel shows one of bosons, in which world
lines entangle. Simulation cell geometries and initial particle
arrangements were purposefully chosen to favor the competing
(i.e., nonequilibrium) phase.

entangle, and the crystalline order is destabilized in favor
of a disordered, superfluid phase, with a value of the
superfluid fraction close to unity [14].

We have observed the same behavior in a simulation of
three-dimensional condensed “He, at a density p =
0.0248 A~ and temperature 7 = 0.5 K (we made use of
the accurate Aziz pair potential [15]). The equilibrium
thermodynamic phase in this case is a superfluid, and
that is what we observe in a simulation of 108 indistin-
guishable *He atoms; i.e., the system quickly melts, if
particles are initially arranged in a regular hcp crystal.
However, in simulations in which exchanges cycles of
particles are inhibited, the system forms a hcp crystal,
albeit with large atomic zero-point oscillations around
lattice sites, even when atoms are initially placed at ran-
dom positions. The difference in energy between the crys-
talline phase of distinguishable helium atoms, and the
actual superfluid phase of “He, is of the order of 0.5 K;
exchanges contribute to lowering the atomic kinetic energy
by approximately 1 K, offsetting the potential energy in-
crease due to the loss of crystalline order.

In order to develop some appreciation for the importance
of thermocrystallization, and how one cannot ‘“‘sweep it
under the rug,” it is worth mentioning that p =
0.0248 A3 in the hcp solid is very close to zero pressure,
as we verified by direct calculation (see also Ref. [16]).
Thus, it is because of Bose statistics that the equilibrium
thermodynamic phase of condensed helium at 7 = 0.5 Kis
a superfluid, rather than a crystal. By contrast,
Boltzmannons are capable of forming a solid phase at
densities (and pressures) where vacancy and interstitial
gaps are found to close, near zero pressure. Our discussion
is consistent with recent studies of Boltzmannons with
Coulomb interactions [3], which observe the effect of ther-
mocrystallization, with a slope linear in T for the transition
line between the liquid and the solid in the phase diagram.
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In order to arrive at a semiquantitative theory of the
thermocrystallization phenomenon, we note that dominant
excitations in a system of Boltzmannons at low tempera-
ture are radically different from sound waves in bosonic
liquids and solids. If one considers a single particle as
distinguishable from all others (e.g., as in Feynman’s
original study of a single 3He impurity in superfluid “*He
[17]), one may assume an impuriton excitation character-
ized by a parabolic dispersion relation €, = k*>/2m*, with
effective mass m* = mj ¢ for liquid and solid phases,
respectively. Impuriton type excitations with the same €,
remain well defined in a system of Boltzmannons, because
their ground state is homogeneous due to particle delocal-
ization over the entire system volume. At finite tempera-
ture, delocalization of particle labels over the de Broglie
wavelength A; = 4/277/m*T guarantees that unmodified
impuriton excitations exist at energies € >> T’; their inverse
lifetime 77! ~ +/T€ can be estimated from the condition of
traveling a distance A;. For thermodynamic applications,
however, damping rates comparable to the typical quasi-
particle energy do not change scaling of energy and free
energy with temperature, and thus semiquantitative results
can be obtained by considering a gas of N distinguishable
quasiparticles with dispersion relation €.

This picture applies to both liquid and crystal, but for the
latter one should take into account that €, is a tight-binding
dispersion relation, with an exponentially small bandwidth
W, set by tunneling exchange of particles. Thus, at 7 < W
we are dealing with an effective mass m§ ~2d/ Wa?, orders
of magnitude larger than m; (in helium, m§/m; ~ 10%). At
T > W, the thermal part of free energy of Boltzmannons
(and any other multicomponent system) is in leading order
purely entropic: AFg = F(T) — F(0) = —TS, where § =
In(N!) (in general, 5 is the number of distinguishable
permutations in the N-particle system). When bosons are
replaced with Boltzmannons, both the crystal and the liquid
acquire negative contributions to their free energies, but
AFyg is larger in magnitude than AF;. This enables a
transition to a solid phase at finite temperature, even if the
ground state is liquid. The effect of thermocrystallization
discussed here is similar to the liquid-solid transition in *He,
which is driven by fast spin entropy increase (up to In2 per
particle) in the crystalline phase.

Quantitatively, using standard expressions for the ideal
gas,

.
F, — Fg~ AE©) + ENTI™S
2 my

T<WwW), @

F; — Fg~AE(0) + %ZNTlnT;f’g (WLT K Ty), 3)
where d is the dimensionality, AE(0) = E;(0) — E(0) is
the energy difference in the ground state and Tye, ~
27n?? /m; is an estimate of the liquid degeneracy tem-
perature. Note the finite slope of the liquid-solid interface
at low temperature, T, < (—AE(0)/N)/In(mg/mj), and

the fact that this slope can be quite small due to exponen-
tially large effective mass ratio. At T > T4, both phases
fully realize their In(N!) entropies and effects of quantum
statistics become unimportant. The resulting phase dia-
gram is illustrated in Fig. 2. The reentrant behavior will
take place in any system of distinguishable particles close
to the liquid-solid quantum critical point. The dashed curve
may or may not extend to regions of negative pressure. In
order not to overload the discussion we focus on the liquid-
solid transition; i.e., we exclude vapor, and gloss over
possible hexatic (in 2D) and supersolid phases which
may exist for certain systems.

In the path-integral language, the difference between
bosons and Boltzmannons is exclusively in the nature of
periodic boundary conditions in imaginary time 7 €
(0,1/T), in that world lines for distinguishable particles
are not allowed to form exchange cycles. Feynman’s theo-
rem for the ground state is understood as strongly fluctuat-
ing paths, such that looking at any imaginary time scale one
is unable to determine whether the world lines would even-
tually form exchange cycles or not: at 7 << 1/T the system
can well be mapped to a system with open boundary con-
ditions in imaginary time. From this picture, we deduce that
propagation of the impuriton world line in imaginary time
7 < 1/T, described by the Matsubara Green’s function, is
the same in bosonic and Boltzmannon systems, in
agreement with the previous conclusion. Interestingly,
thermocrystallization is now linked to the increased ‘‘bend-
ing” energy (action, to be more precise) for highly en-
tangled world lines to satisfy boundary conditions.
Whereas bosonic world lines reconnect on each other and
form large (macroscopic) exchange cycles, the distinguish-
able lines have to return to their original positions. This puts

T

FIG. 2. Schematic liquid-solid phase diagram for Lennard-
Jones type Bose systems. Solid lines separate the normal fluid
(NF), superfluid (SF), and crystalline (C) phases. The dashed line
shows the position of the crystal-liquid boundary if quantum
exchanges are neglected. In case of “He mass and potential,
distinguishable particles predict a solid phase around T = 0.5 K.
Phases at P <0 are metastable as vapor (excluded here for
clarity) is the equilibrium state at finite temperature and zero
pressure. Note that in the 7 — 0 limit the descriptions in terms of
distinguishable and Bose particles become equivalent [7].
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FIG. 3. An illustration of the nucleation process leading to
large crystalline seeds. Compared to their bosonic counterpart
(upper part), the distinguishable particles (lower part) have a
lower free-energy nucleation barrier due to the large negative
free energy shift of the crystalline phase.

liquid world line configurations of Boltzmannons at a dis-
advantage with respect to their bosonic counterpart. In the
vicinity of the superfluid-solid transition, long exchanges of
indistinguishable particles (comprising a finite fraction of
all particles in the system) play a crucial role in stabilizing
the equilibrium superfluid phase. Hence, neglecting quan-
tum exchanges results in an incorrect characterization of the
physics of the system.

Long exchange cycles are also crucial for determining
the lifetime and metastability of superglasses. A plausible
order-of-magnitude estimate of the lifetime of a superglass
phase of “He, places it at least in the millisecond range
[18], which should allow for its experimental observation.
Classical jamming is understood as a physical process
wherein the system enters a structurally disordered state,
with severely restricted motion of individual particles,
which cannot easily rearrange into a more energetically
favorable configuration. In its extreme form, it leads to the
formation of classical glasses. An intuitive characterization
of the superglass phase consists of quantum jamming of
highly entangled particle world lines. On the one hand, this
state has frozen structural disorder on a microscopic scale,
on the other hand it can support dissipationless flow of its
own particles, if macroscopic exchanges extend throughout
the whole system. In order for the system to find its
equilibrium lower-energy ordered (and insulating) configu-
rations, world lines have to disentangle from macroscopic
exchange cycles, and this can be expected to involve rare
multiparticle exchanges; i.e., the nucleation of the crystal
phase proceeds through the multiparticle seed. At finite
temperature, it is reasonable to expect that the leading
channel should be thermal (rather than quantum) nuclea-
tion. In this case, illustrated in Fig. 3, the free-energy
barrier is higher for indistinguishable particles, rendering
the probability of nucleation dramatically lower compared
to that of Boltzmannons. Thus, effects of Bose statistics are
instrumental in conferring enhanced stability to both
liquids and superglasses. Studies of Boltzmannons at finite
temperature miss the quantum jamming effect of long
exchange cycles, and cannot therefore be used to address
existence and stability of superglasses [19].

In conclusion, we showed that indistinguishability of par-
ticles has profound effects on the phase diagram of Bose
systems, *He being the most obvious case. The inclusion of
exchanges of indistinguishable particles in the formalism is
crucial, in order to obtain correct phase transition lines,
zero-point motion alone being insufficient at finite tempera-
ture, contrary to a claim routinely made even in textbooks [1].
For superglass phases, particle entanglement caused by long
exchange cycles greatly enhances its lifetime against crys-
tallization, an effect that cannot be captured by studies in
which Bose statistics are neglected.
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