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Drug gradients are believed to play an important role in the evolution of bacteria resistant to antibiotics

and tumors resistant to anticancer drugs. We use a statistical physics model to study the evolution of a

population of malignant cells exposed to drug gradients, where drug resistance emerges via a mutational

pathway involving multiple mutations. We show that a nonuniform drug distribution has the potential to

accelerate the emergence of resistance when the mutational pathway involves a long sequence of mutants

with increasing resistance, but if the pathway is short or crosses a fitness valley, the evolution of resistance

may actually be slowed down by drug gradients. These predictions can be verified experimentally, and

may help to improve strategies for combating the emergence of resistance.
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The evolution of drug resistance is an urgent problem in
the treatment of disease, from bacterial infections to cancer.
Attempts to address this problem include the characterization
of mutational pathways leading to resistance [1,2], as well
as theoretical [3–8] and experimental [9–11] studies of the
emergence of resistance under different treatment regimens.
These studies usually assume a spatially uniform drug
concentration. However, in many clinical situations drug
concentrations vary in space [12,13], for example, where
malignant cells form less drug-permeable layers such as
bacterial biofilms [14] or tumor stromas [15]. Recent experi-
mental work [16] suggests that the evolution of antibiotic
resistance in bacterial populations can be greatly accelerated
if the antibiotic concentration is spatially nonuniform.

It is often observed that several mutations are required to
obtain maximal resistance to a drug [1,2,16]. In some cases,
fitness (i.e., drug resistance) increases steadily along the
mutational pathway to full resistance [1]; in other cases,
epistatic interactions between mutations may result in less
fit intermediate genotypes (fitness ‘‘valleys’’) [17–19]. The
role of mutational pathways in controlling evolutionary dy-
namics has been studied in the quasispecies model [20,21]
and in models of cancer progression [22,23], which do not
take into account the effects of spatial inhomogeneity. In
models without complex evolutionary pathways, it is well
known that spatial structure can increase genetic diversity,
the rate of evolutionary diversification [24–28], and the rate
of viral drug resistance [29]; indeed, in a broader statistical
physics context, spatial structure plays a key role in many
theoretical studies of evolving populations [24,30–36].

Here, we present a model that combines evolution along
mutational pathways in genotype space with population
dynamics in nonuniform environments. We use this model
to study the evolution of drug resistance as a population of
cells colonizes an environment containing a nonuniform
distribution of a growth-inhibiting drug. Our key result is
that the effect of drug gradients depends critically on the

pathway to resistance. This is due to a complex interplay
between the spatial drug distribution and the mutational
pathway. In the presence of drug gradients, the population
evolves drug resistance in a sequence of waves of increas-
ingly better-adapted mutants; the population’s range thus
expands in a stepwise manner. In contrast, for a uniformly
distributed drug, resistant mutants evolve at random posi-
tions and spread over the entire environment. If tolerance to
the drug increases monotonically along the mutational path-
way, drug gradients can significantly accelerate the evolution
of resistance by increasing selection at the population’s edge.
However, if the pathway crosses a fitness valley, evolution of
resistance may actually be slowed down by a nonuniform
drug distribution, as a result of a reduced rate of ‘‘stochastic
tunneling’’ due to a smaller population size.
The model.—We consider a growing population of cells

which mutate betweenM possible genotypes, with different
levels of resistance to a drug. To model the effects of spatial
heterogeneity, the population is assumed to reside within a

FIG. 1 (color online). Simulation snapshots for the cases of a
uniform and an exponentially increasing drug concentration (left
and right, respectively). Blue thick lines show the drug concen-
tration (left axes), while the colors (shades of gray in gray scale)
represent the populations of the different genotypes (right axes).
Parameter values are K ¼ 100, L ¼ 500, M¼6, �¼5�10�6,
�m¼4m�1, and the drug concentration c ¼ 0:3 (left panel) and
cðxÞ¼e�x�1 with �¼0:012 (right panel). For corresponding
movies, see the Supplemental Material [38].
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chain of L connected microhabitats, which may contain
different concentrations of the drug. These discrete micro-
habitats might represent connected chambers in a microflui-
dic experiment [16]; in the limit of small microhabitats, our
model represents a population growing in continuous space.
Within a givenmicrohabitat i the population is assumed to be
well mixed, with a fixed carrying capacity K; cells of geno-
type m replicate at rate �mðciÞð1� Ni=KÞ, where Ni is the
total population of cells in microhabitat i, ci is the drug
concentration, and �mðciÞ is the growth rate of genotype m,
which depends on the local drug concentration. Upon repli-
cation, cells mutate with probability�; we consider the case
of anunbranchedmutational pathway todrug resistance, such
that genotypemmutates only into genotypesm� 1 (without
any bias). Cells migrate betweenmicrohabitats i and i� 1 at
rate b=2 and die at a fixed rate d; the latter ensures that in
the steady state there is a turnover of cells, with the net birth
rate being equal to the death rate d.

A key feature of our model is the fact that different
genotypes show different levels of drug resistance: geno-
type 1 is least resistant while genotype M is most resistant.
For all genotypes, the growth rate decreases with the drug
concentration; the minimal inhibitory concentration (MIC),
�m, denotes the drug concentration at which genotype
m ceases to be able to grow. This is embodied in our model
by setting �mðcÞ ¼ maxf0; 1� ðc=�mÞ2g. This choice is
inspired by Ref. [37] (see also the Supplemental Material
[38], Sec. I).

We study this model using kinetic Monte Carlo simula-
tions (Supplemental Material [38], Sec. II) which are initi-
ated with N1 ¼ K cells of genotype 1 in microhabitat 1 and
with all the other microhabitats empty, so that the population
colonizes the space during the simulation, as it evolves
resistance to the drug. We define the units of time by fixing
the maximal growth rate �mð0Þ ¼ 1 and the units of drug
concentration by fixing�1 ¼ 1, andwe set b ¼ 0:1, d¼0:1,
andK ¼ 100.We usevalues of� andL such that the number
ofmutants per generation emerging anywhere in the environ-
ment is typically small,�KL � 1, and stochastic effects are
relevant. A detailed discussion of the parameter set is given
in the Supplemental Material [38], Sec. I.

To investigate the effects of the spatial distribution of the
drug, we consider two scenarios: (i) a nonuniform drug
concentration ci ¼ expð�iÞ � 1, which increases exponen-
tially from left to right with steepness �; and (ii) a uniform
drug concentration ci � c. Note that we have not chosen to
keep the total amount of drug constant. Rather, we allow
the parameters � and c to vary over their whole range, and
determine whether, under any circumstances (i.e., for any
values of � and c), it is possible for resistance to evolve
faster in the nonuniform environment. In the nonuniform
case, we vary �, the only constraint being that the drug
concentration c1 in the first microhabitat must be lower
than �1, to allow the first genotype to establish. In
the uniform case, we vary the drug concentration c; the
same condition implies that c � �1, otherwise the space
cannot be colonized by genotype 1. Thus, the local drug

concentration can be much higher in the nonuniform than
the uniform environment. Indeed, one of the results of our
model is that spatial gradients can allow colonization of
regions of much higher drug concentration than would be
possible in a uniform drug environment.
Monotonically increasing MIC.—The mutational

pathway to drug resistance plays a crucial role in our simu-
lations. We first consider a pathway to resistance for which
theM genotypes have increasing levels of drug resistance—
i.e., �m > �m�1 for all m> 1, as depicted in Fig. 2(c).
In particular, we set M ¼ 6 and �m ¼ 4m�1; the ratio
�6=�1 � 103 between fully resistant and wild-type cells
is consistent with experimentally determined values [1].
Our simulations show that the emergence of drug resist-

ance occurs very differently in the cases of uniform and
nonuniform drug distribution, as illustrated in the snapshots
of Fig. 1 and in themovies in the SupplementalMaterial [38].
If the drug concentration is spatially uniform (Fig. 1, left),
genotype 1 (blue, dark in gray scale) first spreads to fill the
entire space, thenmutants of genotype 2 (green, light gray in
gray scale) emerge at random locations and spread to fill the
space (competingwith cells of genotype 1) before giving rise
to more resistant mutants of genotype 3, etc. In contrast, in
the presence of a drug gradient (Fig. 1, right), population
waves of increasingly better-adapted mutants advance from
left to right in a stepwise manner. Genotypem colonizes the
space only up to a well-defined spatial boundary, where it

FIG. 2 (color online). Average time to resistance �� for uniform
[(a),(d), circles] and nonuniform [(b),(e), circles] drug concen-
trations, forM ¼ 6, L ¼ 500, K ¼ 100, and� ¼ 5� 10�6. Top
panels (a),(b): exponentially increasing MIC [shown in (c)].
Bottom panels (d),(e): fitness valley [shown in (f)]. For the
nonuniform case (b),(e), the dashed lines show the minimal
value of �� obtained for the uniform case [i.e., the minimum of
��ðcÞ from (a),(d)]. The solid lines show the theoretical predic-
tions: (a) �� � 126 642=c3=2 [see also Eq. (IV.11) in the
Supplemental Material [38], Sec. IV], (b) Eq. (3), (d) Eq. (4),
and (e) Eq. (5). The insets in (b) show simulation snapshots taken
just before the first occurrence of genotype m ¼ 6, for two
values of � (indicated by arrows).
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forms a stationary ‘‘front’’; better-adapted mutants then
emerge from this front to further colonize the space. Thus
the spatial gradient generates local ‘‘niches’’ with low drug
concentrations, in which less resistant genotypes can dwell,
generating more resistant mutants, which can then colonize
regions with higher drug concentrations.

These differences have important consequences for the
time to emergence of drug resistance. Figures 2(a) and 2(b)
show the mean time �� to emergence of full drug
resistance—i.e., the time to emergence of a mutant with
m ¼ M ¼ 6, averaged over surviving populations. For a
uniform drug concentration ci ¼ c, �� decreases as the drug
concentration c increases (note that c ¼ 1 corresponds to
theMIC of genotype 1) [Fig. 2(a)]. For the nonuniform drug
distribution [Fig. 2(b)], �� varies nonmonotonically as a
function of the steepness �, with a minimum at � � 0:01.
This arises because for very small � the selection pressure
for the evolution of resistant mutants is low (since little drug
is present), whereas for very large �, the fronts become
narrow, reducing the size of the ‘‘zone’’ in which new
resistant mutants can emerge (see snapshots in Fig. 2(b)].

Importantly, for almost all values of � and c in Fig. 2,
resistance emerges faster for the nonuniform drug distri-
bution than for the uniform case; the minimal value of
�ð�Þ in the nonuniform case is smaller by an order of
magnitude than the minimal value of �ðcÞ in the uniform
case [dashed line in Fig. 2(b)]. This can be understood
intuitively as follows. For the uniform drug distribution, a
new genotype mþ 1 must compete with the already
established genotype m; selection pressure is weak be-
cause the drug concentration is low (restricted by the
constraint c < �1). In contrast, the nonuniform drug
distribution ensures that for each genotype m, there exists
a spatial location with drug concentration c close to its
MIC �m > �1. At the population’s front, the high drug
concentration imposes maximal selection pressure for
the emergence of the next genotype mþ 1, which then
can colonize the adjacent empty space, free from com-
petition. Thus, if the MIC increases monotonically along
the pathway to resistance, a nonuniform drug distribution
carries the potential for much faster evolution of drug
resistance than is possible if the drug is uniformly
distributed.

This picture depends crucially, however, on the length of
the mutational pathway, as shown in Fig. 3. For long muta-
tional pathways (large M), resistance indeed emerges
faster in the nonuniform environment. For short pathways
(M< 4 in Fig. 3), however, the situation is reversed;
resistance actually emerges faster in the uniform environ-
ment than in the nonuniform one, despite the fact that the
drug concentration is higher in the latter case. This is
because the uniform environment provides a larger popu-
lation size from which resistant mutants can emerge.

Our results can be rationalized using simple physical
arguments. We begin with the case of a nonuniform drug
distribution. In our simulations, the population wave of
genotype m typically reaches a ‘‘steady state’’ before

mutants of genotype mþ 1 emerge; this is because the
selection pressure is high only at the stationary front
(see the movies in the Supplemental Material [38]). We
therefore consider these two processes separately. In the
continuous approximation (valid for large L and � � 1),
the expansion of a wave of mutants of genotype m is
described by the Fisher-Kolmogorov equation [39],

@tNm ¼ b

2
@xxNm þ�mNm

�
1� Nm

K

�
� dNm

¼ b

2
@xxNm þ ð�m � dÞNm

�
1� �mNm

Kð�m � dÞ
�
;

(1)

where x � i, �m � �m½cðxÞ�, and Nm � Nmðx; tÞ denotes
the population of genotype m. If cðxÞ � �m, �m � 1 and
Eq. (1) describes a Fisher wave propagating with speed

v � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bð1� dÞp

[39]. The wave stops when it reaches the
point where cðxÞ � �m; for small b the stationary solution
of Eq. (1) reads N	

mðxÞ ¼ Kf1� d=�m½cðxÞ�g, which

decays to zero at x	m ¼ ð1=�Þ lnð�m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� dÞp þ 1Þ.
Assuming that the wave of mutants of genotypem emerges
at x	m�1 (i.e., at the stationary front of the preceding wave),
the time it takes to reach its stationary state is then Twave

m �
ðx	m � x	m�1Þ=v, with Twave

1 � x	1=v.
Once the stationary population of genotype m is estab-

lished, the waiting time before a new wave of mutants of
genotype mþ 1 arises can be expressed for low mutation
rates as the inverse of the total rate at which mutants
establish in the population—i.e., assuming strong selection,

Tmut
mþ1 ¼

�
�

2

Z x	m

x	
m�1

N	
mðxÞrðxÞPfixðxÞdx

��1
: (2)

Here �=2 is the probability to mutate from genotype m to
mþ 1, rðxÞ � d is the rate of reproduction in the steady

FIG. 3 (color online). Average time �� to full resistance as
a function of the mutational pathway length M for uniform
(c ¼ 0:9; triangles) and nonuniform (� ¼ 0:07; crosses) drug
distribution. In both cases L ¼ 300, K ¼ 100, and � ¼ 10�4.
Solid lines are theoretical predictions for the nonuniform case
[calculated numerically from Eqs. (2) and (3)] and uniform case
(calculated as explained in the Supplemental Material [38],
Sec. V).
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state, and Pfix ¼ ð�mþ1 ��mÞ=�mþ1 is the probability
of fixation of genotypemþ 1; this is a standard result [40].

The mean total time until the first cell of genotype M
emerges is then

�� � XM�1

m¼1

Twave
m þ XM�1

m¼2

Tmut
m : (3)

The value of �� calculated from Eqs. (2) and (3) is in good
quantitative agreement with our simulation results [black
line in Fig. 2(b)]. Equation (3) decomposes the time to
resistance into the independent contributions of each wave
of mutants. For our choice of MICs and drug distribution,
Tmut
m and Twave

m are approximately independent ofm for large
m (see Supplemental Material [38], Sec. III). Hence for our
model �� grows linearly with the length of the pathwayM as
shown in Fig. 3. The scaling changes, however, for very
large M (Supplemental Material [38], Sec. III).

If the drug is uniformly distributed, cðxÞ ¼ c, a different
argument applies. Here, new genotypes must compete in
an already fully colonized space. The time to fixation of
genotype mþ 1 scales with the fitness advantage as
ð�mþ1 ��mÞ��, where � > 0 depends on whether muta-
tions are rare or frequent (Supplemental Material [38],
Sec. IV). Since the drug concentration is fixed, the selective
pressure �mþ1 ��m / c2=42m decreases for successive
genotypes. The rate-limiting step in the evolution of resist-
ance is then the fixation of genotype M� 1, and, as we
show in the Supplemental Material [38], Sec. IV, for the

parameter set from Fig. 2, we obtain �� � 126 642=c3=2.
This prediction agrees well with our simulation results
[Fig. 2(a)]. The decrease in selective pressure with m also
leads to a superlinear increase in ��ðMÞ withM, as shown in
Fig. 3. It is a consequence of this effect that, even though for
smallM evolution is faster in the uniform drug distribution,
for large M, resistance evolves much faster in the drug
gradient [41].

Fitness valley.—We now contrast these results with the
situation where the pathway to resistance passes through a
‘‘fitness valley’’—i.e., one of the intermediate genotypesm
has a lower MIC (is less drug-resistant) than its neighbor-
ing genotypes m� 1 and mþ 1. This scenario can arise
due to epistatic interactions between mutations [17,18],
such that two mutations are required to gain a particular
fitness benefit. In our model we set �3 ¼ 3:5, keeping all
the other �m ¼ 4m�1 as before, so that �2 >�3 <�4, as
depicted in Fig. 2(f). Figure 2(e) shows that the presence of
the fitness valley has a dramatic effect on the time to
resistance in the nonuniform environment: ��ð�Þ now rises
steeply with �. Crucially, the shortest time to resistance in
the nonuniform environment is now comparable to that in
the uniform environment, min�½�ð�Þ� � minc½�ðcÞ�, and
�ð�Þ>minc½�ðcÞ� for almost all values of� [see Figs. 2(d)
and 2(e)]. Thus, when the pathway to resistance contains a
fitness valley, a nonuniform drug distribution does not
speed up, and may well slow down the emergence of
resistance.

To understand this result, we argue that the rate-limiting
step in the evolutionary process is the ‘‘tunneling’’ through
the fitness valley [42]: mutants of genotype 4 arise from the
population of genotype 2 via short-lived mutants of geno-
type 3which do not reachfixation.The tunneling rate ���1 has
been calculated for well-mixed populations in Ref. [42]
[Eq. (2) therein]. Applying this result to the case of uniform
drug distribution we obtain ���1 � rN2ð�=2Þ2ðPfix=sÞ,
where N2�LKð1�dÞ is the population size of genotype 2,
s¼ð�2��3Þ=�2 is the selective advantage of genotype 2
over genotype 3,Pfix ¼ ð�4 ��2Þ=�2 is the fixation proba-
bility of genotype 4, and r is the growth rate which in the
steady state equals the death rate d. For our choice of �ðcÞ
and f�mg, this gives

�� � 1:23=ðd�2N2Þ ¼ 1:23=½d�2LKð1� dÞ�; (4)

which is independent of c. Equation (4) is in good agreement
with our simulation results [black line in Fig. 2(d)].
Extending this approach to the nonuniform case,we integrate
over the steady-state population density of genotype 2,

�� � 1:23

d�2

�Z x	
2

0
N	

2ðxÞdx
��1

: (5)

This result agrees well with our simulation results for the
nonuniform drug distribution [Fig. 2(e)]. The increase in ��
with the steepness of the drug concentration profile� occurs
because the domain occupied by genotype 2 decreases as �
increases, reducing the pool of cells from which mutants of
genotype 4 can emerge and slowing down the evolution of
resistance.
Conclusion.—Our results show that the mutational path-

way to drug resistance plays a crucial role in determining
the effect of a spatial drug distribution on the time to evolve
drug-resistant cells. If fitness (i.e., level of drug resistance)
increases monotonically along the mutational pathway, a
nonuniform drug distribution has the potential to accelerate
the evolution of resistance, by a factor that increases
dramatically with the length of the pathway. In contrast,
for short pathways, or those involving a fitness valley, our
results show that a nonuniform drug distribution does
not speed up the evolution of resistance—indeed, it may
actually slow it down. We have verified that these conclu-
sions are also valid for two-dimensional simulations and
for more complex drug distributions [43].
Our predictions can be verified experimentally. Recent

microfluidic experiments by Zhang et al. suggest that
gradients of the antibiotic ciprofloxacin greatly accelerate
the emergence of resistance of the bacterium E. coli [16].
Although the mutational pathway in this case is not known,
our results suggest that it is likely to be monotonic [44].
Furthermore, we predict that repeating the experiments of
Zhang et al. using cefotaxime (monotonic pathway [1])
should produce similar results, but that for streptomy-
cin, which has a fitness valley [17,18], drug gradients
should actually slow down the emergence of resistance.
Furthermore, our results may also pave the way to the
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development of new experimental methods, in which the
characteristics of unknown mutational pathways are de-
duced by measuring the dependence of the time to resist-
ance on drug concentration and drug gradient.
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Note added.—After submission of this manuscript we
became aware of related work [45], which addresses a
similar model to ours, for the case of the mutational path-
way with monotonically increasing MIC.
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