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We present an analysis of finite-size effects in jammed packings of N soft, frictionless spheres at zero

temperature. There is a 1
N correction to the discrete jump in the contact number at the transition so that

jammed packings exist only above isostaticity. As a result, the canonical power-law scalings of the contact

number and elastic moduli break down at low pressure. These quantities exhibit scaling collapse with a

nontrivial scaling function, demonstrating that the jamming transition can be considered a phase

transition. Scaling is achieved as a function of N in both two and three dimensions, indicating an upper

critical dimension of 2.
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Numerical simulations of particulate systems are
unavoidably limited to a finite number of particles. It has
long been recognized in the context of phase transitions
that this limitation can be exploited [1] to yield insight into
the nature of the transition. In the context of the zero-
temperature jamming transition of frictionless sphere
packings [2], a finite-size analysis should be particularly
valuable because the transition appears to be a rare ex-
ample of a random first-order transition in finite dimen-
sions, characterized by a discontinuous jump in the contact
number (i.e. the average number of interacting neighbors)
and power-law scaling [3,4] as well as diverging length
scales [5–7].

In this Letter, we establish that there are finite-size
corrections to the contact number and moduli above the
jamming transition. We also reveal novel finite-size behav-
ior close to the transition that can be scaled to collapse onto
a single curve, firmly establishing the connection between
jamming and phase transitions. While previous work by
Olsson and Teitel [8] demonstrated scaling collapse in the
unjammed regime, our focus is on jammed systems above
the transition. We find that all finite-size effects scale with
Ld � N in d dimensions, where d ¼ 2, 3, L is the linear
size of the system, and N is the total number of particles.
Such scaling is expected of a system at or above its critical
dimension [9] and implies that the jamming transition has
an upper critical dimension of 2. This is consistent with
the observation that the power-law exponents are the same
in 2 and 3 dimensions [4], as well as an argument that
fluctuations should be unimportant for d � 2 [10].

We consider disordered packings of N frictionless
spheres at temperature T ¼ 0 and pressure, p, with a
finite-range, repulsive potential between particles i and j:

VðrijÞ ¼ �

�
ð1� rij=�ijÞ� (1)

only if rij � �ij, where rij is the center-to-center distance,

�ij is the sum of their radii, and � � 1 sets the energy

scale. The effective spring constant between contacts is

keff � h@2VðrijÞ
@r2ij

i [2]. Each packing is relaxed to a local

energy minimum. We then remove the small fraction of
‘‘rattler’’ particles that do not contribute to the rigidity
of the system [4].
Before counting constraints for finite systems, we must

specify what it means for a system to be jammed. One
possible definition is that, in the absence of rattlers, the
only zero-frequency vibrational modes are associated with
global translation of the system [4]. For N spheres in d
dimensions, there are dN degrees of freedom and d global
translations so that dN � d of the degrees of freedom must
be constrained. This requires that the number of contacts
satisfies Ncontact � dN � d. Since the contact number is

Z � 2Ncontact

N , we obtain

ZN
iso � 2d� 2d

N
: (2)

This is the minimum contact number required for the
system to have no soft modes beyond those corresponding
to global translations. In the infinite-size limit, this reduces
to the isostatic condition, Z1

iso ¼ 2d, consistent with pre-

vious results [3,4]. However, this definition relies on the
choice of relevant degrees of freedom. Rattlers, for ex-
ample, have no effect on the elastic properties of a packing
but contribute d zero modes each if not removed. Similarly,
a sphere can rotate about its center without any effect on
the packing. Thus, this definition can break down, as it
does when generalized to packings of ellipsoids [11–13].
A more physical requirement is that system have a

positive bulk modulus, B. The minimum number of con-
tacts needed for a packing of N spheres to have a positive
bulk modulus, Nmin

contact, is
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Nmin
contact ¼ dN � dþ 1 (3)

so that the minimum contact number is:

ZN
B � ZN

iso þ
2

N
¼ 2d� 2d

N
þ 2

N
: (4)

In principle, packings with B> 0 are not forbidden from
having complicated soft modes. For sphere packings (with
rattlers removed) we have never observed such nontrivial
soft modes and therefore assume in the following argument
that they do not exist for generic packings. In this case, at
least one additional contact above dN � d is required for
the system to have a positive bulk modulus.

The origin of this extra contact can be understood by
treating the size of the periodic box as a degree of freedom.
When Z � ZN

iso, there are at most as many constraint equa-

tions as particle degrees of freedom. If there are no non-
trivial soft modes, it is possible to satisfy the constraints
rij ¼ �ij for every contact. Thus, by Eq. (1), the total

energy and pressure must be zero. Since any deformation
in the linear regime does not form any new contacts, the
energy remains constant and the bulk modulus, B, must be
zero. Therefore at least one additional contact is needed for
the system to have a positive bulk modulus or pressure. This
additional contact corresponds to the last term in Eq. (3) and
leads to ZN

B in Eq. (4). For any positive pressure, the contact
number should satisfy Z � ZN

B , and we expect that

lim
p!0þ

Z ¼ ZN
B : (5)

A third possible definition of jamming is that the system
have a positive shear modulus, G, as well as bulk modulus.
Dagois-Bohy, et al. [14] have recently shown that packings
can be constructed to have positive bulk and shear moduli
by allowing the shape of the box to vary during minimi-
zation. In two dimensions, this introduces 2 extra degrees
of freedom for the square box to distort to a rhombus
or rectangle. In d dimensions, there are 1

2dðdþ 1Þ � 1

degrees of freedom corresponding to the shape of the box.
Therefore, the extension of our counting argument to such
‘‘shear-stabilized’’ packings predicts a minimum contact
number of ZN

BG � 2d� 2d=N þ dðdþ 1Þ=N. This exactly

agrees with the findings of Dagois-Bohy, et al. [14].
To test the prediction in Eq. (5) and examine finite-size

effects, we generated packings of particles with harmonic
repulsions given by VðrijÞ with � ¼ 2 for systems ranging

from N ¼ 64 to N ¼ 4096. For this potential, keff is inde-
pendent of rij (and therefore compression) as long as the

particles overlap. The relative radii in 2 dimensions were
chosen from a flat distribution between � � 1 and 1:4�,
while in 3 dimensions a bidisperse mixture of ratio 1:1:4was
used. We fixed the box shape and used pressure as the
control variable to produce packings with a positive bulk
modulus. These packings correspond to what Dagois-Bohy,
et al. [14] refer to as the ‘‘compression-only’’ ensemble.

Mechanically stable configurations were generated for
a range of pressures spanning 7 orders of magnitude. In
a square (cubic) periodic box, particles were placed at
random. The system was then quenched to a local energy
minimum (using a combination of linesearch methods,
Newton’s method and the FIRE algorithm [15] to max-
imize accuracy and efficiency), and the packing fraction
was adjusted until a target pressure was reached. Systems
were thrown out if the minimization algorithms did not
converge. For each dimension, system-size, and pressure,
quantities were averaged over 1000 to 5000 packings. The
shear and bulk moduli were calculated via linear response
from the dynamical matrix as in [16,17]. In finite systems,
there is a well-defined linear regime in which the contact
network is fixed [18]. By using linear response, we ensure
that the elastic moduli are calculated in this regime.
Figure 1(a) and 1(b) shows both Z� ZN

iso and G versus

p in 2 dimensions. Similar results are obtained in 3 dimen-

sions (see Figs. 2 and 3). As expected, Z� ZN
iso � p1=2 at

high pressures, consistent with previous studies [3,4], but
approaches 2=N at low pressures in accord with Eqs. (4)
and (5). Thus, one extra contact is needed beyond the
isostatic value in order for the bulk modulus to be positive,
as predicted. Moreover, Fig. 2(a) shows that the data
collapse when ðZ� ZN

isoÞN, related to the total number of

excess contacts, is plotted versus p1=2N.
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FIG. 1 (color online). (a) Z� ZN
iso and (b) G as a function of

pressure for different system sizes in 2 dimensions. For both
quantities, the power-law exponent of 1=2, observed at high
pressures, agrees with the known scaling for harmonic poten-
tials. At low pressures, however, finite-size effects dominate. G
is averaged over configurations and shear directions.
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It is not obvious from constraint-counting arguments
alone that at the jamming transition the contact number
data should obey finite-size scaling: Z� ZN

iso ¼ NyFðpzNÞ
for some y and z. However, if it does then we can show
that y ¼ �1 and z ¼ 1=2, consistent with Fig. 2(a).
By counting constraints, we have argued that Z� ZN

iso !
ZN
B � ZN

iso ¼ 2=N as p ! 0. This is satisfied if

limx!0FðxÞ ¼ 2 and y ¼ �1. In the large N limit, on the
other hand, we must recover the asymptotic scaling rela-

tion Z� ZN
iso � p1=2, independent of N. This can only be

satisfied if FðxÞ � x at large x, and z ¼ 1=2. Therefore, the
only possible scaling is

Z� ZN
iso ¼

1

N
Fðp1=2NÞ; (6)

where FðxÞ � 1 for small x and FðxÞ � x for large x
[see Fig. 2(a)].

The shear modulus, shown in Fig. 1(b), displays

G� p1=2 at high pressures, again consistent with previous
studies [3,4]. As the pressure is lowered, however, G devel-
ops a plateau that is proportional to 1

N . For a system of N

spheres, one would expect that if one extra contact is re-
quired to constrain the size of the periodic box so thatB> 0,
additional contacts would be required to constrain the shape
of the box as well so that G> 0, as found by Dagois-Bohy,
et al. [14]. However, Fig. 1(b) shows that although the shear
modulus is not positive in all directions for all configura-
tions, the angle- and configuration-averaged shear modulus
is positive with the addition of only one extra contact.
To understand this, note that the shear modulus measures
the response to a deformation at constant volume; the size
of the periodic box is held fixed under shear strain and is
therefore no longer an independent degree of freedom as

it was under compression. This allows the extra contact in
Eq. (3) to do double duty—it can contribute to the stability
of the system against shear as well as compression. This
extra contact is the origin of the plateau in G.
Figure 2(b) shows that, like ðZ� ZN

isoÞN, GN also shows

finite-size scaling as a function ofp1=2N for different system
sizes and pressures. Note that the slight N-dependence for
large pressure in Fig. 1(b) completely vanishes when the
data are scaled [Fig. 2(b)]. This is a result of the nontrivial

scaling function at intermediate p1=2N.

The plateaus at low p1=2N in the scaling functions for
ðZ� ZN

isoÞN and GN result from the fact that ZN
iso contacts

per particle are not enough for the system to have a positive
bulk modulus—one additional contact is required. These
plateaus can be subtracted off in order to study the system-
size dependence in greater detail. In this case, Fig. 2(c)
shows that Z ! ZN

B at low pressures, confirming Eq. (5).
Importantly, as we asserted above, no properly minimized
configurations are observed that satisfy both Z < ZN

B

and B> 0.
Note that ðZ� ZN

B ÞN, like ðZ� ZN
isoÞN, collapses onto a

single curve when plotted versus p1=2N [Fig. 2(c)]. There is,

however, a crossover to Z� ZN
B � pN for p1=2N <Oð1Þ in

both 2 and 3 dimensions. This scaling arises because quan-
tities like Z� ZN

iso should only be singular at the jamming

transition at p ¼ 0 in the thermodynamic limit; in finite
systems they should be analytic around p ¼ 0. Given the
existence of scaling collapse, which has the form of Eq. (6),
the first two terms in the Taylor expansion of Z� ZN

iso in

powers of p must be

Z� ZN
iso �

c0
N

þ c1pN; (7)
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FIG. 2 (color online). Collapse of (a) Z� ZN
iso and (b) G in 2 and 3 dimensions. In the zero pressure limit, ðZ� ZN

isoÞN ! 2 (dashed
line), which corresponds to a single contact above isostaticity. (c) Collapse of Z� ZN

B in 2 and 3 dimensions. (d) Collapse ofG�G0 in

2 and 3 dimensions. The scaling function is qualitatively similar to that of Z� ZN
B . Inset: the plateau value G0 is proportional to

1
N .

Symbols and colors are the same as in Fig. 1.
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with constants c0 and c1. This is precisely what we observe
in Fig. 2(c), where c0 ¼ 2 reflects the extra contact at the
transition.

For the same reason, we find the same crossover in the
shear modulus when we subtract the plateau value, G0� 1

N .

Figure 2(d) shows that ðG�G0ÞN again collapses in both

2 and 3 dimensions when plotted against p1=2N, with

G�G0 � pN for p1=2N <Oð1Þ. The qualitative similar-
ity between ðZ� ZN

B ÞN and ðG�G0ÞN underscores the
dependence of the shear modulus on the contact number.
Indeed, we find that to a very good approximation, GN is
a pure power law in ðZ� ZN

isoÞN (Fig. 3), in accord with

recent results of Dagois-Bohy, et al. [14].
We have also studied the finite-size scaling of the bulk

modulus, B, which scales as p0 for harmonic repulsions.
Therefore,B approaches a constant value,B0, as p ! 0. As
with the coordination number and shear modulus, we
subtracted off the plateau value to study B� B0. The
quantity B� B0 is necessarily quite sensitive to B0, which
is large, in contrast to G0, which is of order 1=N. Our
results are consistent with ðB� B0ÞN collapsing in both

2 and 3 dimensions as a function of p1=2N with the same
asymptotic behavior as ðZ� ZN

B ÞN and ðG�G0ÞN.
Discussion.—We have argued that an appropriate defi-

nition of jamming is that a system can support an external
stress. One could either restrict the definition to a com-
pressive stress, requiring B> 0, or to any stress, requiring
B> 0 and G> 0. If one requires B> 0, then sphere
packings require one additional contact in the entire sys-
tem, beyond the number calculated for the isostatic condi-
tion, in order to become jammed. If one requires both
B> 0 and G> 0, then dðdþ 1Þ=2 additional contacts
are required.

Our results provide a simple interpretation of the results
of Moukarzel [19], who found that the elastic moduli
vanish in the large N limit for random networks with
Z ¼ 4 in d ¼ 2. Comparing Z ¼ 4 to ZN

iso [Eq. (2)], we

see that Z > ZN
iso so that Z� ZN

iso ¼ 4=N. For random

spring networks, the bulk and shear moduli scale with
Z� ZN

iso, implying that B and G both scale as 1=N for

Z ¼ 4. Thus, our constraint-counting arguments imply that
B and G should vanish as 1=N as N ! 1, consistent with
Moukarzel’s results.
We find that Z� ZN

iso, Z� ZN
B andG are analytic around

the jamming transition in finite systems and exhibit finite-
size scaling collapse, a defining characteristic of phase
transitions. These results cannot be understood from con-
straint counting alone, and provide direct evidence that the
jamming transition is a phase transition.
The finite-size scaling that we observe depends on the

total number of particles, N, rather than on the system
length, L, in both two and three dimensions. For first-order
transitions, quantities exhibit scaling collapse with
N � Ld, the number of particles in the system, not with
L, the linear size of the system [20]. For second-order
transitions in systems at or above the upper critical dimen-
sion, finite-size scaling also leads to collapse withN [9,21].
Earlier observations that the exponents do not depend on
dimension in d ¼ 2 and 3 [2] and an Imry-Ma-type argu-
ment of Wyart [22] both suggest that the jamming transi-
tion has an upper critical dimension of 2. Our result that

quantities exhibit scaling collapse as a function of p1=2N is
therefore consistent with both the first- and mean-field
second-order character of the jamming transition.
We thank Brooks Harris, Tom Lubensky, Anton Souslov,

Brian Tighe, Martin van Hecke, Peter Young, and Zorana
Zeravcic for important discussions. This research was sup-
ported by the U.S. Department of Energy, Office of Basic
Energy Sciences, Division of Materials Sciences and
Engineering under Grants No. DE-FG02-05ER46199
(A. J. L. and C. P.G.) and No. DE-FG02-03ER46088
(S.R.N.). C. P.G. was supported by the NSF through a
Graduate Research Fellowship.

*ajliu@physics.upenn.edu
[1] M. Fisher and M. Barber, Phys. Rev. Lett. 28, 1516 (1972).
[2] A. J. Liu and S. R. Nagel, Annu. Rev. Condens. Matter

Phys. 1, 347 (2010).
[3] D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995).
[4] C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel,

Phys. Rev. E 68, 011306 (2003).
[5] L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett.

95, 098301 (2005).
[6] M. Wyart, S. Nagel, and T. Witten, Europhys. Lett. 72, 486

(2005).
[7] W.G. Ellenbroek, E. Somfai, M. van Hecke, and W. van

Saarloos, Phys. Rev. Lett. 97, 258001 (2006).
[8] P. Olsson and S. Teitel, Phys. Rev. Lett. 99, 178001

(2007).
[9] K. Binder, M. Nauenberg, V. Privman, and A. P. Young,

Phys. Rev. B 31, 1498 (1985).

10-1

100

101

102

103

100 101 102 103 104

G
N

(Z - ZN
iso)N

a

1

b

2d

3d
10-4

10-3

10-2

10-1

10-3 10-2 10-1 100
G

Z - ZN
iso

1

2d

3d

FIG. 3 (color online). GN � ðZ� ZN
isoÞN in both 2 and 3

dimensions. Symbols and colors are the same as in Fig. 1.

PRL 109, 095704 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

31 AUGUST 2012

095704-4

http://dx.doi.org/10.1103/PhysRevLett.28.1516
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104045
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104045
http://dx.doi.org/10.1103/PhysRevLett.75.4780
http://dx.doi.org/10.1103/PhysRevE.68.011306
http://dx.doi.org/10.1103/PhysRevLett.95.098301
http://dx.doi.org/10.1103/PhysRevLett.95.098301
http://dx.doi.org/10.1209/epl/i2005-10245-5
http://dx.doi.org/10.1209/epl/i2005-10245-5
http://dx.doi.org/10.1103/PhysRevLett.97.258001
http://dx.doi.org/10.1103/PhysRevLett.99.178001
http://dx.doi.org/10.1103/PhysRevLett.99.178001
http://dx.doi.org/10.1103/PhysRevB.31.1498


[10] M. Wyart, L. E. Silbert, S. R. Nagel, and T.A. Witten,
Phys. Rev. E 72, 051306 (2005).

[11] A. Donev, R. Connelly, F. H. Stillinger, and S. Torquato,
Phys. Rev. E 75, 051304 (2007).

[12] Z. Zeravcic, N. Xu, A. Liu, S. Nagel, and W. Saarloos,
Europhys. Lett. 87, 26001 (2009).

[13] M. Mailman, C. F. Schreck, C. S. O’Hern, and B.
Chakraborty, Phys. Rev. Lett. 102, 255501 (2009).

[14] S. Dagois-Bohy, B. Tighe, J. Simon, S. Henkes, and M.
van Hecke, preceding Letter, Phys. Rev. Lett. 109, 095703
(2012).

[15] E. Bitzek, P. Koskinen, F. Gahler, M. Moseler, and P.
Gumbsch, Phys. Rev. Lett. 97, 170201 (2006).

[16] W.G. Ellenbroek, Z. Zeravcic, W. van Saarloos, and M.
van Hecke, Europhys. Lett. 87, 34004 (2009).

[17] W.G. Ellenbroek, M. van Hecke, and W. van Saarloos,
Phys. Rev. E 80, 061307 (2009).

[18] C. F. Schreck, T. Bertrand, C. S. O’Hern, and M.D.
Shattuck, Phys. Rev. Lett. 107, 078301 (2011).

[19] C. Moukarzel, Europhys. Lett. 97, 36008 (2012).
[20] M. E. Fisher and A.N. Berker, Phys. Rev. B 26, 2507

(1982).
[21] O. Dillmann, W. Janke, and K. Binder, J. Stat. Phys. 92, 57

(1998).
[22] M. Wyart, Ann. Phys. (Paris) 30, 1 (2006).

PRL 109, 095704 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

31 AUGUST 2012

095704-5

http://dx.doi.org/10.1103/PhysRevE.72.051306
http://dx.doi.org/10.1103/PhysRevE.75.051304
http://dx.doi.org/10.1209/0295-5075/87/26001
http://dx.doi.org/10.1103/PhysRevLett.102.255501
http://dx.doi.org/10.1103/PhysRevLett.97.170201
http://dx.doi.org/10.1209/0295-5075/87/34004
http://dx.doi.org/10.1103/PhysRevE.80.061307
http://dx.doi.org/10.1103/PhysRevLett.107.078301
http://dx.doi.org/10.1209/0295-5075/97/36008
http://dx.doi.org/10.1103/PhysRevB.26.2507
http://dx.doi.org/10.1103/PhysRevB.26.2507
http://dx.doi.org/10.1023/A:1023043602398
http://dx.doi.org/10.1023/A:1023043602398
http://dx.doi.org/10.1051/anphys:2006003

