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In this Letter we show that quantum nonlocality can be superactivated. That is, one can obtain

violations of Bell inequalities by tensorizing a local state with itself. In the second part of this work

we study how large these violations can be. In particular, we show the existence of quantum states with

very low Bell violation but such that five copies of them give very large violations. In fact, this gap can be

made arbitrarily large by increasing the dimension of the states.
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The fact that by combining two quantum objects one can
get something better than the sum of their individual uses
seems to be a characteristic feature of quantum mechanics.
In particular, in quantum information theory this effect has
been extensively studied in quantum channel theory (see, for
instance, [1–3]) and entanglement theory (see, for instance,
[4,5]). Actually, some of these works show a much stronger
behavior called superactivation. That is, one can get a
quantum effect by combining two objects with no quantum
effects. The aim of this work is to study this phenomenon in
the context of quantum nonlocality.

The study of quantum nonlocality dates back to the
seminal work by Bell [6]. In this work the author took the
apparently metaphysical dispute arising from the previous
intuition of Einstein, Podolsky, and Rosen [7] and formu-
lated it in terms of assumptions which naturally lead to a
refutable prediction. Given two spatially separated quantum
systems, controlled by Alice and Bob, respectively, and
specified by a bipartite quantum state �, Bell showed that
certain probability distributions pða; bjx; yÞ obtained from
an experiment in which Alice and Bob perform some
measurements x and y in their corresponding systems
with possible outputs a and b, respectively, cannot be
explained by a local hidden variable model (LHVM).
Specifically, Bell showed that the assumption of a LHVM
implies some inequalities on the set of probability distribu-
tions pða; bjx; yÞ, since then called Bell inequalities, which
are violated by certain quantum probability distributions
produced with an entangled state.

Though initially discovered in the context of foundations
of quantum mechanics, violations of Bell inequalities,
commonly known as quantum nonlocality, are nowadays
a key point in a wide range of branches of quantum
information science. In particular, nonlocal probability
distributions provide the quantum advantage in the security
of quantum cryptography protocols [8,9], in communica-
tion complexity protocols (see the recent review [10]), and
in the generation of trusted random numbers [11].

In order to pass from the probability distribution level to
the quantum state level, we say that a bipartite quantum

state � is nonlocal if it can lead to certain quantum proba-
bility distributions pða; bjx; yÞ in an Alice-Bob scenario
violating some Bell inequality. In the case where any
probability distribution pða; bjx; yÞ produced with the state
� can be explained by a LHVM, we say that � is local.
Because of the importance of quantum nonlocality, it is a

fundamental problem to study whether the nonlocality of a
quantum state can be superactivated. That is,

can the state � � � be nonlocal if � is local? (1)

Some interesting progress has been made on this problem.
Indeed, after some numerical attempts [12], two partial
answers to Eq. (1) have recently been obtained in [13,14].
In the first work, a positive answer to Eq. (1) was given in
the multipartite setting and for the restricted case of
von Neumann measurements (vNm). On the other hand,
in [14] a strong superactivation result was given when one
is restricted to the particular measurement scenario of two
inputs and two outputs per party. Despite this considerable
effort, Eq. (1) has remained open until now. In this work we
show that the general problem (1) has a positive answer.
Furthermore, as we will explain later, previous results
suggest that we can get an unbounded Bell violation with
the state � � �.
We must mention that some previous results on super-

activation have been obtained in different contexts of
quantum nonlocality. A remarkable one was given by
Peres, who showed that superactivation of two-qubit
Werner states can occur when local preprocessing is al-
lowed on several copies of the state of Alice and Bob [15].
Superactivation was also considered for arbitrary en-
tangled states by allowing local preprocessing on the tensor
product of different quantum states [16]. In contrast, our
results do not make use of any local preprocessing. The
problem of superactivation was also studied in the context
of tensor networks [13,17].
Probability distributions in a measurement setting.—A

standard scenario for studying quantum nonlocality consists
of two spatially separated and noncommunicating parties,
usually called Alice and Bob. Each of them can choose
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among different observables, labeled by x ¼ 1; . . . ; N in the
case of Alice and y ¼ 1; . . . ; N in the case of Bob. The
possible outcomes of these measurements are labeled by
a ¼ 1; . . . ; K in the case of Alice and b ¼ 1; . . . ; K in the
case of Bob. Following the standard notation, we will refer
to the observables x and y as inputs and call a and b outputs.
For fixed x; y, we will consider the probability distribution
ðPða; bjx; yÞÞKa;b¼1 of positive real numbers satisfying

XK

a;b¼1

PðabjxyÞ ¼ 1:

The collection P ¼ ðPða; bjx; yÞÞN;K
x;y;a;b¼1 will also be re-

ferred as a probability distribution.
Given a probability distribution P, we will say that P is

classical or LHVM if

Pða; bjx; yÞ ¼
Z

�
P!ðajxÞQ!ðbjyÞdPð!Þ (2)

for every x; y; a; b, where ð�;�;PÞ is a probability space,
P!ðajxÞ � 0 for all a; x;!;

P
aP!ðajxÞ ¼ 1 for all x;!,

and analogous conditions for the Q!ðbjyÞ’s. We denote the
set of classical probability distributions byL. On the other
hand, we say that P is quantum if there exist two Hilbert
spaces H1; H2 such that

Pða; bjx; yÞ ¼ trðEa
x � Fb

y�Þ (3)

for every x; y; a; b, where � 2 BðH1 �H2Þ is a density
operator and ðEa

xÞx;a � BðH1Þ, ðFb
y Þy;b � BðH2Þ are two

sets of operators representing positive-operator valued mea-
surements (POVM) on Alice’s and Bob’s systems. We
denote the set of quantum probability distributions by Q.

It is not difficult to see that bothL andQ are convex sets
and, furthermore, that L is a polytope. The inequalities
describing the facets of this set are usually called Bell
inequalities. As we have explained before, the fact that L
is strictly contained in Q, or, equivalently, that there exist
some elements Q 2 Q which violate certain Bell inequal-
ities, is a crucial point in quantum information theory.
We say that a bipartite quantum state is local if for all
families of POVMs, fEa

xgx;a, fFb
y gy;b, the corresponding

probability distribution Q ¼ ðtrðEa
x � Fb

y�ÞÞx;y;a;b belongs

toL. Otherwise, we say that � is nonlocal. It is known that
a pure state j’ih’j is nonlocal if and only if it is entangled
[18]. However, the situation is not as nice in the case of
general states. Indeed, it was shown in [19,20] that there
exist certain entangled states � which are local, laying the
foundation for the later understanding of quantum entan-
glement and quantum nonlocality as different quantum
resources.

In order to separate the setsL andQ, it is very helpful to
slightly extend the notion of Bell inequality. For an arbi-

trary M 2 RN2K2
, we consider the quotient

LVðMÞ ¼ !�ðMÞ
!ðMÞ ;

where we define !�ðMÞ ¼ supfjhM;Qij: Q 2 Qg and
!ðMÞ ¼ supfjhM;Pij: P 2 Lg, and for every probability
distribution P we denote

hM;Pi ¼ XN;K

x;y;a;b¼1

Ma;b
x;y pða; bjx; yÞ

(see [21–23] for a complete study on this). Note that the
existence of Bell violations can be stated by LVðMÞ> 1
for certain M’s.
The Khot and Visnoi game.—In the remarkable paper

[24], the authors used a particularly interesting game GKV

to give very tight estimates in the context of large viola-
tions of Bell inequalities. This game is usually called the
Khot-Visnoi game (or KV game) because it was first
defined by Khot and Visnoi to show a large integrality
gap for a semidefinite programming relaxation of certain
complexity problems (see [25] for details). Since the KV
game will play an important role in this work, we will give
a brief description of it (see [24] for a much more complete
explanation). For any n ¼ 2l with l 2 N and every � 2
½0; 12�, we consider the group f0; 1gn and the Hadamard

subgroup H. Then, we consider the quotient group G ¼
f0; 1gn=H which is formed by 2n

n cosets [x] each with n

elements. The questions of the games (x; y) are associated
to the cosets whereas the answers a and b are indexed by
[n]. The game works as follows: The referee chooses a
coset [x] uniformly at random and one element z 2 f0; 1gn
according to the probability distribution Pr ðzðiÞ ¼ 1Þ ¼ �,
Pr ðzðiÞ ¼ 0Þ ¼ 1� �, independently of i. Then, the ref-
eree asks question [x] to Alice and question [x � z] to Bob.
Alice and Bob must answer with an element of their
corresponding cosets, and they win the game if and only
if a � b ¼ z. We can realize the KV game as an element

in RN2K2
with N ¼ 2n

n and K ¼ n. Actually, it is very easy

to see that for every probability distribution P ¼
ðPða; bj½x�; ½y�ÞÞN;K

½x�;½y�¼1;a;b¼1 we have

hGKV; Pi ¼ Ez
n

2n
X

½x�

X

a2½x�
Pða; a � zj½x�; ½x � z�Þ:

Now, as a consequence of a clever use of the hypercon-

tractive inequality, one can see that !ðGKVÞ � n�ð�=1��Þ
(see Theorem 7 in [24]). Furthermore, one can define, for

any a 2 f0; 1gn, the vector juai 2 Cn by uaðiÞ ¼ ð�1ÞaðiÞffiffi
n

p for

every i ¼ 1; . . . ; n. It is trivial from the properties of the
Hadamard group that ðPa ¼ juaihuajÞa2½x� defines a

von Neumann measurement (vNm) for every [x]. These
measurements will define Alice’s and Bob’s quantum strat-
egies. Then, as was shown in [24], for � ¼ 1

2 � 1
lnn , Q the

quantum probability distribution constructed with the maxi-
mally entangled state in dimension n, jc ni ¼ 1ffiffi

n
p P

n
i¼1 jiii,

and the previous vNms, one obtains
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!ðGÞ � C
1

n
and hGKV; Qi � C0 1

ðlnnÞ2 ; (4)

where C and C0 are universal constants which can be taken
to be, respectively, C ¼ e4 and C0 ¼ 4 [26].

Superactivation of quantum nonlocality.—In order to
show our superactivation result, let us consider the iso-
tropic state

�p ¼ pjc dihc dj þ ð1� pÞ 1
d2

; (5)

where jc dihc dj is the maximally entangled state in di-
mension d and 1

d2
is the maximally mixed state. It was

proven in [19,27] that �p is local if

p ¼ ð3d� 1Þðd� 1Þðd�1Þ

ðdþ 1Þdd :

Let us fix d ¼ 8 so that p ¼ � 1
d for a certain �> 1, and

from this point on let us remove the p dependence of �.
By the previous explanation, it suffices to find a natural

number k and a quantum probability distribution Q con-
structed with the state ��k such that Q does not belong to
L. Therefore, let us consider an arbitrary k and note that
��k can be expanded as

pkjc dihc dj�k þ 	 	 	 ¼ pkjc dkihc dk j þ 	 	 	 ; (6)

where the rest of the terms in Eq. (6) are formed by tensor
products of jc dihc dj’s and 1

d2
’s with certain coefficients

which are products of p’s and (1� p)’s.
In order to find our violation of a Bell inequality, we will

construct the quantum probability distribution and the
violated Bell inequality at the same time. Indeed, we will
consider the KV game for n ¼ dk, GKV, and the associated
vNms in dimension n. Now, on the one hand, we have said
previously that

!ðGKVÞ � C
1

dk
: (7)

Therefore, we will finish our proof by showing that for a
high enough k, the quantum probability distribution Q
constructed with our vNms and the state ��k satisfies

hGKV; Qi
C 1

dk

> 1: (8)

To see this, we first note that hGKV; Qii � 0 for every i,
whereQi is the quantum probability distribution formed by
the vNms and the ith term in (6). Indeed, this trivially
follows from the fact that GKV is a game, so it has, in
particular, positive coefficients. Therefore, there will be no
cancellations and it is enough to show (8) for the first term
in (6). Since the state in the first term is the maximally
entangled state, we know again from the previous section
that hGKV; Q1i is greater than or equal to C0 1

ðlnnÞ2 ¼
C0 1

ðk lndÞ2 . Therefore, we obtain

hGKV; Qi
C 1

dk

� pkhGKV; Q1i
C 1

dk

� C0

C
�k 1

ðk lndÞ2 ;

which tends to1when k ! 1 since �> 1. The proof now
follows trivially.
Quantifying quantum nonlocality and some sharp upper

bounds.—Beyond their interest from a foundational point
of view, quantifying quantum nonlocality is very helpful in
quantum information theory. Roughly speaking, if viola-
tions of Bell inequalities mean that quantum mechanics is
more powerful than classical mechanics, the amount of
Bell violation quantifies how much more powerful it is (see
[21–23] for some recent results in this direction). In order
to define a measure of quantum nonlocality for a given
state �, let us denote Q� the set of all quantum probabil-

ities constructed with the state �. Then, for a given element

M 2 RN2K2
, we will denote

LV�ðMÞ ¼ !�
�ðMÞ

!ðMÞ ; (9)

where !�
�ðMÞ ¼ supfjhM;Qij: Q 2 Q�g and !ðMÞ is as

defined in the first section. Finally, the key object of study is

LV� :¼ sup
N;K

sup
M2RN2K2

LV�ðMÞ:

The quantityLV� was introduced in [23] as a natural measure

of how nonlocal a state � is (see [28] for a more complete
explanation). Indeed, since nonlocality usually refers to
probability distributions, it is natural to quantify the amount
of nonlocality of a state � by measuring how nonlocal the
quantum probability distributions constructed with � can be.
LV� measures exactly this. In fact, Proposition 3 in [22]

allows us to write LV� in the following alternative way,

which emphasizes its connection to nonlocality:

LV� ¼ 2

��

� 1;

where �� is the infimum over N, K, and P 2 Q� of

supf� 2 ½0; 1�: �Pþ ð1� �ÞP0 2 L for some P0 2 Lg:
Actually, the KV game was considered in [24] to show that
LVjc di � C d

ðlndÞ2 for certain universal constant C, providing

in this way a tight lower bound which almost matches the
known upper bound estimate LV� � d for any

d-dimensional state � [21,28]. Furthermore, it was recently
shown that we cannot completely remove the ln factor in the
estimate given by Buhrman et al. [24]. Specifically, the
following result was proven in [28]:

LVjc di � D
d
ffiffiffiffiffiffiffi
lnd

p ; (10)

where D is a universal constant. As we will show in the
following section, beyond their own interest, these logarith-
miclike estimates are very useful to obtain results about
nonmultiplicativity.
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Unbounded almost activation.—According to the pre-
vious section, the problem of the multiplicativity of quan-
tum nonlocality could be written as

is
LV��k

ðLV�Þk
> 1 for certain states �? (11)

Here, k is any natural number bigger than 1. The proof
presented previously shows that Eq. (11) is affirmative
even for k ¼ 2 and a state � verifying LV� ¼ 1. But,

how large can the quotient in (11) be? In this section we
will show that if we forget about superactivation and focus
on the multiplicativity properties of the measure LV�, we

can give a much stronger result than the previous one in
terms of the amount of violation. Actually, we will show
the following result.

For every � > 0 and � > 0 we have a state � (of a
sufficiently high dimension d) verifying that

LV� < 1þ � and LV��5 > �: (12)

Note that in this case we can make the quotient in (11)
arbitrarily large for a fixed number k ¼ 5 by considering a
state � of a sufficiently high dimension. This is very differ-
ent from the estimate obtained previously, where the in-
creasing k is necessary to get a large violation. The price to
pay now is that we do not know that our initial state is local,
but just almost local in terms of Bell violations.

In order to prove this result, let us consider p ¼
ðlndÞ1=2��=d, where � is an arbitrary constant in ð0; 12Þ and

� ¼ pjc dihc dj þ ð1� pÞ 1
d2

:

Using Eq. (10) and the fact that the state 1
d2
is separable, we

deduce that

LV� � Dp
d

ðlndÞ1=2 þ ð1� pÞ � DðlndÞ�� þ 1: (13)

On the other hand, by the same computations as shown
previously, we can deduce that, if Q is the quantum proba-
bility distribution constructed with the vNms associated
with the KV game in dimension d5 and the state ��5 , we
have

LV��5 � hGKV;Qi
!ðGKVÞ � p5 C

0

C

d5

ð5 lndÞ2 ¼ C00ðlndÞ1=2�5�:

Taking � ¼ 1
11 the statement follows by considering a high

enough d.
Conclusions.—In this work we have proven that quan-

tum nonlocality can be superactivated. This answers a
fundamental question about one of the most puzzling and
powerful effects in nature. In particular, we have answered
the recent enhancement of problem 21 posed by Liang in
[29]. Actually, the proof we have presented in this work is
very simple and, hopefully, completely understandable for
a general audience.

Beyond the proof of this fundamental result, one could
ask about the amount of Bell violation in this superactiva-
tion effect. We have shown that the amount of Bell
violation attainable by a quantum state is a highly non-
multiplicative measure. Note that the enhancement of a
Bell violation via tensor products had already been studied
in [12]. However, the enhancement known for mixed states
was very mild. Here, we have shown that one can get
arbitrarily large Bell violations by taking a finite number
of tensor products of an almost-local state. Some results
support the conjecture that this phenomenon is also true
when we study superactivation, so that one could obtain an
unbounded superactivation result; this would mean that
one can obtain an arbitrarily large amount of Bell viola-
tions by taking a finite number of tensor products of a local
state. Indeed, Eq. (10) strongly supports that a logarithmic-
like estimate like the one given in Eq. (12) of Ref. [27] for
von Neumann measurements should hold for general
POVMs. The proofs we have presented above could then
be followed step by step to show an unbounded super-
activation result. However, currently, we do not know how
to adapt our techniques in [28] to get such an estimate.
Finally, it is worth mentioning that, since the quantum

probability distributions that we have used in all our proofs
are constructed with vNms (the ones used in the KV game),
one can obtain unbounded superactivation of quantum
nonlocality in the restricted setting of vNms. Indeed, using

the estimate p	
L � �ðlndd Þ obtained in [27] for vNms, we

can follow exactly the same steps as in the previous proofs
to obtain an arbitrarily large amount of Bell violation with
a finite number of tensor products of a state which is local
under vNms. However, we must mention that restricting to
vNms in the study of activation of quantum nonlocality (or,
in general, problems involving tensor products of states)
distorts the problem quite a lot.
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