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We have modulated the density of a trapped Bose-Einstein condensate by changing the trap stiffness,

thereby modulating the speed of sound. We observe the creation of correlated excitations with equal

and opposite momenta, and show that for a well-defined modulation frequency, the frequency of the

excitations is half that of the trap modulation frequency.
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Although we often picture the quantum vacuum as con-
taining virtual quanta whose observable effects are only
indirect, it is a remarkable prediction of quantum field
theory that the vacuum can generate real particles when
boundary conditions are suddenly changed [1–4]. Known
as the dynamical Casimir effect, a cavity with accelerating
boundaries generates photon pairs. Recent experiments
have demonstrated this effect in the microwave regime
using superconducting circuits [5,6]. Hawking radiation
[7] is another situation characterized by spontaneous pair
creation and work on sonic analogs to the Hawking
problem [8] has led to the realization that Bose-Einstein
condensates (BEC) are attractive candidates to study such
analog models [9–11], because their low temperatures
promise to reveal quantum effects. Here we exhibit an
acoustic analog to the dynamical Casimir effect by modu-
lating the speed of sound in a BEC. We show that corre-
lated pairs of elementary excitations, both phononlike and
particlelike, are produced, in a process that formally
resembles parametric down-conversion [4,12].

The first analyses of the dynamical Casimir effect
considered moving mirrors, but it has been suggested that
a changing index of refraction could mimic the effect
[13,14]. Our experiment is motivated by a suggestion in
Ref. [12] that one can realize an acoustic analog to the
dynamical Casimir effect by changing the scattering length
in an interacting Bose gas. The change in the interaction
strength is analogous to an optical index change: the speed
of sound (or light) changes. Seen in a more microscopic
way, the ground state of such a gas is the vacuum of
Bogoliubov quasiparticles whose makeup is interaction
dependent. Changing the interaction strength projects this
old vacuum onto a new state containing pairs of the new
quasiparticles [12], which appear as pairwise excitations.
Instead of changing the interaction strength, we have sim-
ply modified the confining potential, which in turn changes
the density. Sudden changes such as these have also been
suggested as analogs to cosmological phenomena [15–17].

We study two situations, in the first the confining poten-
tial is suddenly increased and in the second the potential
is modulated sinusoidally. The sinusoidal modulation of
the trapping potential was studied in Refs. [18–20] in the

context of the observation of Faraday waves. Our results
on sinusoidal modulation are similar to this work and we
have extended it to observe correlated pairs of Bogoliubov
excitations. We produce these excitations in both the
phonon and particle regimes, and observe correlations in
momentum space. Parametric excitation of a quantum gas
was also studied in optical lattices in which the optical
lattice depth was modulated [21,22], although in that
experiment, the excitation was observed as a broadening
of a momentum distribution.
The experimental apparatus is the same as that described

in Refs. [23,24] and is shown schematically in Fig. 1(a).
We start from a BEC of approximately 105 metastable
helium (He�) atoms evaporatively cooled in a vertical
optical trap to a temperature of about 200 nK. The trapped
cloud is cigar shaped with axial and radial frequencies of
7 and 1500 Hz. In the first experiment we raise the trapping
laser intensity by a factor of 2 with a time constant
of 50 �s using an acousto-optic modulator [see inset to

Fig. 1(b)]. The trap frequencies thus increase by
ffiffiffi
2

p
. The

compressed BEC is held for 30 ms before the trap laser is
switched off (in less than 10 �s). The cloud falls onto a
position sensitive, single atom detector which allows us to
measure the atom velocities [25]. After compression, the
gas is excited principally in the vertical direction: trans-
versely we only observe a slight heating (about 100 nK).
Figure 1(b) shows a single shot distribution of vertical
atom velocities relative to the center of mass and integrated
horizontally, while Fig. 1(c) shows the same distribution
averaged over 50 shots. These distributions are more than 1
order of magnitude wider than that of an unaffected BEC.
The individual shots show a complex structure which is not
reproduced from shot to shot, as is seen from the washing
out of the peaks upon averaging.
We consider the correlations between atoms with verti-

cal velocities vz and v0
z, by constructing a normalized

second-order correlation function, gð2Þðvz; v
0
zÞ [25], aver-

aged over the x-y plane and shown in Fig. 2(a). The plot
exhibits two noticeable features along the v0

z ¼ vz and
v0
z ¼ �vz diagonals. The former reflects the fluctuations

in the momentum distribution, as in the Hanbury Brown–
Twiss effect [26], except that this cloud is far from thermal
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equilibrium. The v0
z ¼ �vz correlation is a clear signature

of a correlation between quasiparticles of opposite veloc-
ities. A projection of this off-diagonal correlation is shown
in Fig. 2(b). At low momentum, the excitations created by
the perturbation are density waves (phonons) which in
general consist of superpositions of several atoms traveling
in opposite directions. In the conditions of our clouds, a
phonon is adiabatically converted into a single atom of the
same momentum during the release by a process referred to
as ‘‘phonon evaporation’’ [27]. Therefore in the phonon
regime as well as in the particle regime, we interpret the
back-to-back correlation in Fig. 2(a) as the production of
pairs of Bogoliubov excitations with oppositely directed
momenta as predicted in the acoustic dynamical Casimir
effect analysis [12].

To further study this process, we replace the compres-
sion by a sinusoidal modulation of the laser intensity
IðtÞ ¼ I0ð1þ � cos!mtÞ [inset of Fig. 1(d)]. We choose �
such that the trap frequencies are modulated peak to peak
by about 10%. The modulation is applied for 25 ms
before releasing the condensate. Figures 1(d) and 1(e)
show, respectively, single shot and averaged momentum
distributions resulting from the modulation. One sees that
the momentum distribution develops sidebands, approxi-
mately symmetrically placed about the center. Figure 3(a)
shows the normalized correlation function, plotted in the

same way as in Fig. 2(a), for a modulation frequency
!m=2� ¼ 2170 Hz. We again observe antidiagonal corre-
lations as for a sudden excitation except that the correla-
tions now appear at a well-defined velocity, which
coincides with that of the sidebands [see Fig. 3(b)].
We have examined sinusoidal modulation for frequen-

cies !m=2� between 900 and 5000 Hz and observed
excitations similar to those in Fig. 3. We summarize our
observations in Fig. 4(a) in which we plot the excitation
frequency as a function of the sideband velocity. We also
plot the locations of the peaks in the correlation functions
on the same graph. For modulation frequencies much
above 2 kHz, the antidiagonal correlation functions are
quite noisy preventing us from clearly identifying correla-
tion peaks. This noise may have to do with the proximity
of the parametric resonance with the transverse trap fre-
quency (� 3 kHz) [19].
Aweakly interacting quantum gas obeys the well-known

Bogoliubov–de Gennes dispersion relation between the
frequency !k and wave vector k:

!k ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2 þ

�
@k2

2m

�
2

s
; (1)

with � ¼ 1 and c, the sound velocity. This relation
describes both phonons (long wavelength excitations)
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FIG. 1 (color online). Effects of time-varying potentials. (a) Schematic view of the experiment. Pairs of Bogoliubov quasiparticles
are created by varying the trap stiffness. After the flight to the detector these excitations appear as a broadening or sidebands on the
atom cloud in the vertical (z) direction. In the following plots we convert arrival times to relative velocities and average over the
transverse dimensions. (b) Single shot velocity distribution for a cloud which was subjected to a sudden increase in the trap stiffness.
The inset shows the time evolution of the trap stiffness. (c) As in (b) but averaged over 50 shots. (d) Single shot velocity distribution for
a cloud which was subjected to a weak, sinusoidal modulation of the trap stiffness at 2.17 kHz. The inset shows the time evolution of
the trap stiffness. (e) As in (d) but averaged over 780 shots.
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whose dispersion is linear and free particles, whose disper-
sion is quadratic. If our observation indeed corresponds to
the creation of pairs, we expect the total excitation energy
to be shared between the two excitations. Momentum con-
servation, on the other hand, requires that the two energies
be equal, implying !m ¼ 2!k. Therefore the relation
between the modulation frequency and the sideband veloc-
ity should also be given by Eq. (1) but with � ¼ 2 and
k ¼ mvz=@. Fitting the points in Fig. 4(a) to (1) with � and
c as free parameters, we obtain � ¼ 2:2� 0:3. The fitted
sound velocity, 8� 3 mm=s, is consistent with the value
one can calculate from the trap parameters and the esti-
mated number of atoms [25].

We can further corroborate our interpretation of pairwise
excitations by a method more direct and robust than the 2

parameter fit to the data in Fig. 4(a). In Fig. 4(b), we
compare the dispersion relation resulting from modulation
with that obtained by Bragg scattering. Bragg scattering
produces single excitations of quasiparticles at a definite
energy and momentum [28]. We excited the BEC with
two lasers in the Bragg configuration to determine the
frequency for a given k vector [25]. Then, under the same
experimental conditions, using sinusoidal trap laser modu-
lation, we excited the BEC at various frequencies and
found the corresponding velocities. The lower curve in
Fig. 4(b) is a fit to the Bragg data in which we fix � ¼ 1
and fit the speed of sound. The upper curve is a fit to the
trap modulation data in which we set the speed of sound
to that found in the first fit and we allowed � to vary. This
second fit yields � ¼ 2:07� 0:2. The fitted speed of
sound for this data set (about 13 mm=s) is higher than in
the data of Fig. 4(a), because during these runs the number
of atoms in the condensate was larger.
An even more dramatic confirmation of our interpreta-

tion would be the observation of sub-Poissonian intensity
differences in the two sidebands, as was observed in the
experiment of Ref. [5], as well as in Refs. [29]. The latter
experiment modulated the center of a trapped, one dimen-
sional gas producing transverse excitations which in turn

FIG. 3 (color online). Density correlations after a periodic
modulation. (a) Normalized correlation function gð2Þðvz; v

0
zÞ

measured after sinusoidal modulation of the trap frequency at
a frequency !m=2� ¼ 2:17 kHz, averaging over 243 experi-
mental shots. We observe a strong correlation between well-
defined, oppositely directed velocities. (b) Plot of the density
distribution (blue) and of the antidiagonal velocity correlation
function, gð2Þðvz; v

0
z ¼ �vzÞ (red).
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FIG. 2 (color online). Density correlations after a sudden
compression. (a) Normalized correlation function gð2Þðvz; v

0
zÞ of

the data in Fig. 1(c) (50 shot average). The signal on the diagonal
results from the density fluctuations in the cloud. The antidiag-
onal line indicates the creation of correlated quasiparticles with
opposite momenta, and is the signature of the dynamical Casimir
effect. (b) Antidiagonal correlation function gð2Þðvz; v

0
z ¼ �vzÞ.

The smooth line shows the result of smoothing the data over a
window of about 1 cm=s. The correlations apparently persist
over a scale comparable to that of the density distribution. (c)
Correlation function along the dashed line and integrated over a
region indicated by the dotted arrows, as a function of �vz ¼
v0
z � vz. The dips on either side of the peak may be related to the

effect reported in [32].
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produced twin beams. Equivalently, one could ask whether
the Cauchy-Schwarz inequality is violated [30], indicating
a nonclassical correlation. Comparing intensity differences
in the sidebands we observe a reduction of the fluctuations
compared to uncorrelated regions of the distribution.
However, we observe no sub-Poissonian fluctuations or
Cauchy-Schwarz violation, probably because of a back-
ground under the sidebands [see Fig. 1(d)]. The back-
ground is due to atoms spilling out of the trap before
release.

Another difference between our experiment and an ideal
realization of the dynamical Casimir effect is that the
temperature is not negligible. This means that the pair
generation did not arise from the vacuum but rather from
thermal noise. For our temperature of 200 nK, the thermal
occupation of the mode of frequency 2 kHz is 1.6. In
the absence of a thermal background, the normalized

correlation function would show an even higher peak.
Using the perturbative approach of Ref. [12], one can

show that gð2Þðvz; v
0
z ¼ �vzÞ is a decreasing function of

the temperature, since thermal quasiparticles are uncorre-
lated and only dilute the correlation.
Many authors have discussed the relationship of the

dynamical Casimir effect to Hawking and Unruh radiation
(see [4] for a recent review). It has also been pointed out
that the two-particle correlations arising in the sonic
Hawking problem constitute an important potential detec-
tion strategy [10,31], although the above authors discussed
correlations in position space. The present study has con-
firmed the power of correlation techniques, and shown in
addition that momentum space is a good place to look for
them. We expect that a similar approach can be applied to
Hawking radiation analogs as well as the general problem
of studying the physics of curved spacetime by laboratory
analogies.
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[6] P. Lähteenmäki, G. S. Paraoanu, J. Hassel, and P. J.

Hakonen, arXiv:1111.5608.
[7] S.W. Hawking, Nature (London) 248, 30 (1974).
[8] W.G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).
[9] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Phys.

Rev. Lett. 85, 4643 (2000).
[10] R. Balbinot, A. Fabbri, S. Fagnocchi, A. Recati, and I.

Carusotto, Phys. Rev. A 78, 021603 (2008).
[11] O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A.

Zayats, and J. Steinhauer, Phys. Rev. Lett. 105, 240401
(2010).

[12] I. Carusotto, R. Balbinot, A. Fabbri, and A. Recati, Eur.

Phys. J. D 56, 391 (2009).
[13] E. Yablonovitch, Phys. Rev. Lett. 62, 1742 (1989).
[14] F. X. Dezael and A. Lambrecht, Europhys. Lett. 89, 14001

(2010).

 M
o

d
u

la
ti

o
n

 f
re

q
u

en
cy

 (
H

z)
 a 

1000

0 

b 

2000

3000

4000

5000

Vertical velocity  vz  (cm/s) 
2.01.51.00.50.0

1000

0 

2000

3000

4000

5000

 M
o

d
u

la
ti

o
n

 f
re

q
u

en
cy

 (
H

z)
 

FIG. 4 (color online). Dispersion relation observed by modu-
lating the trap depth. (a) The orange squares show the sideband
velocity determined from the density distributions. The green
triangles are derived from the correlation functions of the same
data. The curve is a fit to the dispersion relation (1) as described
in the text. Only the solid squares were included in the fit: these
points were all taken on the same day, whereas the open squares
were taken under slightly different trap conditions, with possibly
different density. The error bars are statistical estimates based on
the fits to the velocity distributions such as in Fig. 3(b).
(b) Comparison between trap modulation and Bragg scattering.
The black circles are observations of the dispersion relation by
Bragg spectroscopy. The orange squares are found as in (a),
and clearly show that the corresponding frequency is about a
factor of 2 higher than in the Bragg data at a given velocity. The
curves show the two fits discussed in the text. The vertical error
bars on the Bragg data are determined by fits to the Bragg
resonances.
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