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A soft solid is more easily sliced using a combination of normal and shearing deformations rather than

diced by squeezing down on it normally with the same knife. To explain why this is so, we experimentally

probe the slicing and dicing of a soft agar gel with a wire, and complement this with theory and numerical

simulations of cutting of a highly deformable solid. We find that purely normal deformations lead to

global deformations of the soft solid, so that the blade has to penetrate deeply into the sample, well beyond

the linear regime, to reach the relatively large critical stress to nucleate fracture. In contrast, a slicing

motion leads to fracture nucleation with minimal deformation of the bulk and thus a much lower barrier.

This transition between global and local deformations in soft solids as a function of the angle of shear

explains the mechanics of the paper cut and design of guillotine blades.
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Cutting is a ubiquitous process with wide ranging impli-
cations, culturally and technologically [1]. Experimenting
on the kitchen table, we quickly learn that the easiest way
to cut soft solids with a knife is by a slicing action, i.e.,
dragging the sharp blade over the soft surface without
pushing too strongly into it; indeed, pushing the edge of
a knife too strongly into a soft solid only squashes it. And
in the office, we have all surely been the victims of the
paper cut—that painful reminder of a fleeting sliding en-
counter between flesh and fresh paper. But beyond these
everyday examples, the cutting of soft materials is of some
interest in industrial food processing [2–4], and in tissue
analysis in the context of histology [5], nanoskiving [6],
etc. Most previous work has considered cutting as a frac-
ture process driven by normal indentation [1–5]. Here, we
focus on the transition from normal dicing to tangential
slicing and highlight the role of tangential motions and
forces in this process.

To quantify the cutting of a soft solid by sliding a sharp
edge on its surface, we use a thin fishing line or metal wire
(radius R � 150 �m) held taut by clamps, like a cheese
wire, to cut a piece of freshly prepared soft agar, as shown
in Fig. 1(a). The shear modulus of the agar is � � 35 kPa,
and the sample is a slab of thickness h � 5 mm, length
L � 40 mm, breadth B (L� B> h � R). The wire is
kept parallel to the cutting surface to avoid stress localiza-
tion at the edge of the sample. The cutting speed (typically
0:2 mm=s) may be controlled by mounting the agar sample
on a clamp that is moved using a servomotor. We vary the
ratio tan� of tangential to normal speed at the surface to
explore the role of shear in crack nucleation. The tangential
and normal forces associated with the wire as it deforms
and cuts through the surface are measured by two orthog-
onally mounted force sensors as shown in Fig. 1(a). The
roughness of the wire may be controlled by gluing sand or
glass beads on its surface or sanding it and gives us the

ability to control the ratio of normal and shear stresses at
the wire-agar interface.
In Figs. 1(c) and 1(d) we show the normal and tangential

forces as a function of the controlled normal displacement
d measured relative to the undeformed agar surface. For
a minimally sanded wire moving at a constant velocity
normal to the agar surface, i.e., when � ¼ 0, we see that the
normal force Fn increases linearly with the deformation of
the agar, i.e., Fn ��dh, until a peak force is reached
before the wire breaks through the agar surface. The force
then decreases to a constant steady state value that does not
vary further as the wire cuts through the agar at a constant
velocity. This is because once the surface has ruptured, the
natural stress focusing at the advancing crack suffices to
propagate the cut and occurs at a much lower value of the
nominal stress. Monitoring the tangential force Ft on the
surface simultaneously shows that, while it is more than an
order of magnitude smaller than Fn, it also increases with d
until the wire breaks through the surface and then falls
nominally to a value below the noise threshold. However,
as the component of slicing increases with �, the amount of
shearing increases and the peak normal force falls by a
factor of 5 or more [Fig. 1(e)] while the peak shearing force
increases, still remaining below the normal force [Fig. 1(f)].
We thus see clearly that cutting involves two processes: a
nucleation stage dominated by the nonlocal large scale
deformation of the gel without fracture or failure until a
critical stress for fracture nucleation is reached. The nomi-
nal stress then falls to a much smaller value and remains
constant during the growth stage when the cut progresses
steadily as the wire deforms the gel only locally. We see
that as � is increased, the shearing motions greatly reduce
the fracture nucleation barrier, so that it becomes easy to
slice through a soft solid. In our experiments, we find that
the slicing mode crucially changes the initiation of fracture
but has no advantage after the fracture has initiated; others
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have argued [7] that slicing reduces the force required in the
postfracture stage, although the effect is fairly weak and not
noticeable in our experiments.

To understand the mechanics of crack nucleation, we
consider the plane problem of line loading of an elastic
half-space. Assuming cylindrical coordinates with the z
axis at the surface of the half-space, angle � ¼ 0 normal
to the surface, and the line r ¼ 0 loaded by a force of
magnitude f per unit length, with components fn in the
normal direction and ft along the z axis, the resulting stress
tensor can be obtained analytically using the theory of
contact mechanics [8] and yields

� ¼
�rr 0 �rz

0 0 0

�zr 0 �zz

2
664

3
775; (1)

where

�rr ¼ 2�zz ¼ � 2fn cos�

�r
; (2)

�rz ¼ �zr ¼ ft
�r

: (3)

The general combination of tangential and normal stresses
implies that the highest tensile stress induced by line
loading is given by the largest eigenvalue of the stress
tensor and is given by Eq. (1):
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Typically soft solids can resist large compressive stresses
but fail under critical tensile stresses that might result
from a combination of compression and/or shear [9].
For pure normal loading (ft ¼ 0) �1 � 0 for any �,
which means that the stress is compressive everywhere.
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FIG. 1 (color online). (a) Schematic of cutting experiment. A wire of radius R � 150 �m is used to cut through a piece of soft gel
(� � 35 kPa) with a velocity V. The thickness of the sample is h � 5 mm. Shear is controlled via the kinematic angle � between the
direction of penetration by the wire and the normal to the surface of the gel: the normal velocity is kept constant (Vn ¼ 0:2 mm=s),
while the tangential component Vt varies as � changes. (b) The gel surface deforms strongly before the initiation of penetration, and
then rebounds partially; these phases correspond to the nucleation and growth phases of the fracture for purely normal indentation (top)
and increased shearing motion (bottom). We see that shearing reduces the maximum deformation of the gel before fracture is
nucleated. (c) The normal force Fn as a function of penetration depth for various angles of cutting � characterizing the relative rate of
shearing. (d) The tangential shear force Ft as a function of penetration depth for various angles of cutting �. (e) The peak normal force
Fm
n as a function of the shear angle � for a fixed normal velocity drops by a factor of about 5 as the shear angle increases from 0� to

75�. (f) The peak shear force Fm
t as a function of the shear angle � for the same normal displacement rate shows a shallow maximum

but at a value that is nearly an order of magnitude smaller than the normal force.
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For combined normal and tangential loading, however, we

find that a tensile stress arises with the maximum �1 ¼ ft
�r

at the surface of the half-space (� ¼ ��=2); this is the
qualitative origin of the effective efficacy of tangential
slicing relative to normal dicing as we shall see.

Our simple linear line-loading approach, while useful,
is only suggestive as gels and biomaterials are tough and
can thus deform strongly before nucleation of fracture.
Similarly, the assumption of contact mechanics that re-
quires the radii of contacting bodies to be relatively well
separated or very similar [8] is also invalid in general.
To test the validity of our minimal model, we resort to
numerical simulations of varying complexity to mimic the
cutting of a slab, which is itself modeled as a neo-Hookean
material [10], being cut by a rigid wire of radius R.
Discretizing our slab using tetrahedral elements arranged
in a cubical lattice, our discrete deformation gradient F
is determined from the deformed basis vectors of
each tetrahedron, while the stress � ¼ 1

J
@W
@F F

T is derived

from the neo-Hookean strain energy density W ¼
�
2 ½TrðFFTÞJ�2=3 � 3� þ K

2 ðJ � 1Þ2 (see Ref. [10]), where

� and K are the shear and bulk modulus, respectively, and
J ¼ detðFÞ. We assume that the bulk modulus, K ¼ 30�,
is much larger than the shear modulus, a reasonable
approximation for gels and rubbers that are nearly incom-
pressible. To determine the nodal forces, we note that the
stresses in a tetrahedron produces tractions on its surfaces,
which are then integrated to produce the resultants acting
on its nodes. The energy of the slab is minimized by
using damped Newtonian dynamics of the nodes. In all
simulations the base of the slab is clamped and the sides
are constrained to move only in the vertical direction,
while the surface not in contact with the wire is assumed
to be free.

Our first model of the slab assumes that its size L ¼
B ¼ 50R with periodicity in the direction of the wire
(Fig. 2), so that it does not account for the role of the
lateral edges which first contact the cutting wire. Our
numerical lattice is assumed to have 400	 300	 3 nodes
(length	 breadth	 thickness) with periodic boundary
conditions in the thickness direction. The normal contact
between the wire and the slab is modeled as a linear
repulsive force in the radial direction of the wire. To mimic
the tangential motions associated with slicing, lattice nodes
in contact are given forces in the direction of the z axis,
with magnitudes proportional to the radial contact forces
such that a particular value of the ratio of tangential to
normal forces ft=fn is achieved; this is similar to a simple
Amontons-type frictional law at the interface. For small
values of the scaled nominal stress resultant f=�R, our
simulated stress distributions agree well with the simple
analytic theory: cutting attempted using purely normal
stress resultants leads predominantly to a compression of
the slab, while including a shearing or slicing component
leads to tensile stresses at its surface. Of course, the finite

radius of the wire smooths out the singularity of the
line-loading solution so that the maximum tensile stress
�1 � ft=R, which decays as �1 � 1=r as is apparent for
r > R [Fig. 2(b)]. For larger values of fn=�R, however,
nonlinear effects can and do lead to tensile stresses even in
purely normal loading, due to the fact that the surface
stretches in a direction perpendicular to the wire and along
the free surface [Fig. 2(a)]. However, this effect becomes
significant only when penetration of the wire is comparable
to or larger than its radius. Furthermore, the location of
the region of maximum tensile stress also changes with
the nominal state of surface stress. For the case of purely
normal loading, the maximum tensile stress is first found
along the wings of the wire-slab contact zone, while for
fn=�R * 12 the maximum moves right below the wire,
along the line of loading symmetry, as shown in Fig. 2(a).
In contrast, in the case when there is both normal and shear
loading, the stress maximum remains along the wings of
the contact zone for the entire range of forces studied, as
shown in Fig. 2(b). Just as in our experiments, our simu-
lations show that purely normal loading requires the wire to
indent into the slab deeply to reach a large tensile stress
[Fig. 2(a)], whereas shear loading allows us to reach the
same local critical stress using a much smaller displace-
ment and force [Fig. 2(b)]. Thus, for a given critical
fracture nucleation stress, cutting by slicing action requires
only a fraction of the force associated with pure normal
loading.
To account for the three-dimensional nature of the

problem, particularly in the context of how the wire first

FIG. 2 (color online). Numerical simulations of periodic slabs
with shear modulus � that are squeezed or sheared by a wire
of radius R. In (a) the slab is squeezed normally by a force
fn ¼ 15�R per unit length. In (b) fn ¼ 7�R and the slab is, in
addition, sheared tangentially by ft ¼ fn=2. Color indicates the
magnitude of the largest principal (tensile) stress �1. The insets
show tensile stress at the surface of the slab, for various fn, as a
function of distance r from the middle line in the undeformed
configuration.
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contacts the lateral edge of the slab, we also simulated
the full three-dimensional problem [Fig. 3(a)] using a slab
of dimensions L ¼ B ¼ 100R and thickness h ¼ 30R
comparable to our agar samples, discretized into a lattice
of 400	 300	 100 nodes (length	 breadth	 thickness).
Again, as in our experiments, we control the tangential
and normal velocities of the wire and apply a no-slip con-
dition between the wire and the slab. By comparing
Figs. 3(b) and 3(c) and Figs. 1(c) and 1(d), we find that
indentation force profiles obtained using simulations are
very similar to those seen in our experiments. After the
slight nonlinear stiffening at d & R, the slope of the normal
force is well approximated Fn � 5�dh= logðB=RÞ, where
the logarithmic denominator is a consequence of the ��
1=r far field decay of the dominantly two-dimensional
stress field. By assuming that fracture is nucleated for a
tensile surface stress�
 ¼ 2�, we find estimates for cutting
forces that are comparable to the experimentally measured
forces at fracture nucleation. Furthermore, we find that the
normal and tangential forces at nucleation show the same

characteristic behavior with the change in the angle � in our
simulations as in our experiments [Figs. 3(d) and 3(e)]. The
normal force decreases as shear increases, whereas the
tangential force shows amaximumFt � 2�Rh comparable
to its experimental counterpart. Relative normal forces
were, however, slightly higher in the experiments. The
cause of this mismatch may be that friction at the interface
remains poorly quantified. Totally suppressing friction
would lead to sliding of the blade on the surface sample,
and no tangential force, thus suppressing the benefit of
shearing, as is observed with smooth cutting wires. For
any finite friction, the optimal configuration will then be
one poised at the edge of sliding just as fracture nucleation
occurs; indeed, any sliding leads to retarded fracture nu-
cleation and increases the elastic energy stored in the solid
before cutting actually starts.
Our study demonstrates the role of normal and tangen-

tial loading on changing the effective nucleation barrier
for cutting by the interconversion of global and local
modes of deformation on the surface of a soft solid. Since
any stored energy in a strongly deformed soft solid is
irreversibly lost when the stress reaches the critical fracture
threshold, the thermodynamic work of cohesion provides
only a poor lower bound on the energy of fracture [9]. Here
we see an application of this principle wherein the fracture
nucleation barrier is reduced by converting the global
deformation of the solid to a local one using the simple
geometry of loading. This occurs through the slicing action
of a blade which creates a critical local tension at the
surface with minimal global compression of the bulk,
while pure normal loading involves strong global deforma-
tion before fracture initiation and leads to material damage.
In practice, sliding might limit the efficiency of this pro-
cess, so that when cutting soft solids, we must impose a
minimal normal force that enables fracture nucleation due
to slicing. The same principle that holds for paper cuts also
plays a role in the macabre guillotine: the angled blade is
designed to slice through flesh sharply and do so with
minimum resistance rather than squeeze it.
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§Present address: INSP, UMR 7588 du CNRS, Université
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