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The Pauli exclusion principle is a constraint on the natural occupation numbers of fermionic states.

It has been suspected since at least the 1970s, and only proved very recently, that there is a multitude of

further constraints on these numbers, generalizing the Pauli principle. Here, we provide the first analytic

analysis of the physical relevance of these constraints. We compute the natural occupation numbers for

the ground states of a family of interacting fermions in a harmonic potential. Intriguingly, we find that

the occupation numbers are almost, but not exactly, pinned to the boundary of the allowed region

(quasipinned). The result suggests that the physics behind the phenomenon is richer than previously

appreciated. In particular, it shows that for some models, the generalized Pauli constraints play a role for

the ground state, even though they do not limit the ground-state energy. Our findings suggest a general-

ization of the Hartree-Fock approximation.
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Introduction.—In 1925, the study of atomic transitions
led to Pauli’s exclusion principle [1]. It states that for
identical fermions the occupation number for any quantum
state cannot exceed the value 1. By 1926, Dirac [2] and
Heisenberg [3] had identified the exclusion principle as
a consequence of a much deeper statement: the antisym-
metry of the many-fermion wave function. While antisym-
metry allows one to find the correct solutions to the full
many-fermion Schrödinger equation, it does not render the
exclusion principle obsolete: in many situations, the latter
is sufficient to predict the qualitative behavior of fermionic
systems without the need to resort to (often computation-
ally intractable) ab initio methods. The Aufbau principle
for elements in the periodic table serves as a prime
example.

This observation motivates the study of generalizations
of the exclusion principle, which, maybe surprisingly,
exist and exhibit an extremely rich structure [4]. To set
the scene, note that the Pauli constraint can be stated
succinctly as

0 � �i � 1 8i; (1)

in terms of the natural occupation numbers �i, which are
the eigenvalues of the 1-particle reduced density operator
(1-RDO) �1, normalized to the particle number N. The
utility of the exclusion principle is grounded in the fact that
in the ground states of many-fermion systems, one often
observes �i � 0 or �i � 1, which is equivalent to stating
that the Hartree-Fock approximation works fairly well in
these systems.

It had been observed in the 1970s that there are further
linear inequalities respected by the natural occupation
numbers as a result of global antisymmetry [5–7]. One
particular example is the so-called Borland-Dennis setting
^3½H 6� of three fermions and a six-dimensional 1-particle

Hilbert space H 6 [7]. Here, the set of constraints is
given by

�1 þ �6 ¼ �2 þ �5 ¼ �3 þ �4 ¼ 1; (2)

Dð6Þ :¼ �5 þ �6 � �4 � 0; (3)

on the ordered eigenvalues �i � �iþ1.
In a ground-breaking work building on recent progress

in invariant theory and representation theory, Klyachko
exhibited an algorithm for computing all such Pauli-like
constraints [4,8]. In fact, his work is part of a more general
effort in quantum information theory addressing the quan-
tum marginal problem which asks when a given set of
single-site reduced density operators (marginals) is com-
patible in the sense that they arise from a common pure
global state (see also Refs. [9–12]). The global state may
be subject to certain symmetry constraints—one obtains
the fermionic case (commonly known as theN� represent-
ability problem [13,14]) by requiring total antisymmetry
under particle exchange. Klyachko showed that for fixed
particle number N and dimension d of the 1-particle
Hilbert space, the generalized Pauli constraints amount to
affine inequalities of the form

�0 þ �1�1 þ � � � þ �d�d � 0: (4)

Geometrically, these constraints define a convex polytope
PN;d � Rd of possible spectra (for more details see the

Supplemental Material [15]). In general, if a spectral
inequality such as (1) or (4) is (approximately) saturated,
we say that the corresponding spectrum is (quasi)pinned to
its extremum.
The natural question arises whether ground states of

relevant many-body models saturate some of those
inequalities. Strong numerical evidence supporting this
conjecture has been presented in Ref. [16]. The problem
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is challenging to address analytically, as one has to not only
compute the ground state, but also determine and diago-
nalize the corresponding 1-RDO.

Here, we present for the first time an analytic analysis.
For the ground state of a model of interacting fermions in a
harmonic potential, the natural occupation numbers are
calculated. We obtain several results. We confirm that for
this very natural model, the natural occupation numbers
lie, indeed, close to the boundary of the set of allowed ones.
The analytic analysis enables us to track the ‘‘trajectory’’
of eigenvalues as a function of the interaction strength
between the fermions. What is conceptually also impor-
tant, is the fact that the eigenvalues never lie exactly on
the boundary. To see why one could expect the opposite,

note that the ground state energy of a Hamiltonian H ¼P
i;jh

ði;jÞ with two-particle terms hði;jÞ can be represented as
a constrained optimization problem

Emin ¼ min
�ði;jÞ
2

XN

i;j¼1

tr½hði;jÞ�ði;jÞ
2 �;

where the �ði;jÞ
2 are 2-particle density operators that are

compatible in the sense that they are the reduced densities
of some N� fermion state [13,14]. Since the energy func-
tional is linear, it does not possess an unconstrained mini-
mum. Therefore, Emin will be achieved on the boundary
of the set of compatible density operators, where at least
one of the compatibility constraints is active in the sense
that any further minimization would violate it. One way of
understanding why a ‘‘pinning’’ effect for the natural
occupation numbers is observed, is to posit that the gener-
alized Pauli constraints are among the active physical
constraints. While this effect may well occur, we show in
this Letter that quasipinning appears in natural fermionic
systems: the eigenvalue constraints seem to play a role,
but are not active in the above sense. The finding suggests
that the physics of the phenomenon is richer than previ-
ously appreciated. We will return to the physical conse-
quences quasipinning has on the structure of wave
functions after presenting the calculations for our model
system.

The model.—In order to analyze possible pinning effects
analytically, we consider a model of N identical fermions
subject to a harmonic external potential and a harmonic
interaction term

H ¼ XN

i¼1

�
p2
i

2m
þ 1

2
m!2x2i

�
þ 1

2
D

XN

i;j¼1

ðxi � xjÞ2: (5)

The corresponding energy eigenvalue problem without any
symmetry constraint can easily be solved by transforming
the Hamiltonian to the one of decoupled harmonic oscil-
lators. Two eigenfrequencies appear: a nondegenerate one
describing the center of mass motion and another (N � 1)-
fold degenerate frequency associated with the relative

motion. The natural length scales corresponding to these
eigenmodes are

l :¼
ffiffiffiffiffiffiffiffi
@

m!

s

; ~l :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@

m!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ND=ðm!2Þp

s
:

By rescaling the energy and the length scale, the fermion-
fermion coupling constant D can be absorbed by the term
m!2. Hence, the spectrum � of a 1-RDO corresponding to
an eigenstate of H depends only on the relative fermion-
fermion interaction strength ND

m!2 ¼ ðl~lÞ4 � 1. In fact, it will

prove slightly more convenient to parametrize the coupling
using

� :¼ ln

�
l
~l

�
¼ 1

4
ln

�
1þ ND

m!2

�
: (6)

Then, in the regime of weak interaction, D and � are in

leading order proportional, D ¼ 4m!2

N �þOð�2Þ.
To study the physical relevance of the generalized Pauli

constraints we restrict the Hamiltonian H to the fermionic
Hilbert space ^N½H1�, with H1 ¼ L2ðRÞ; i.e., we are
treating the N particles as fermions (without spin). In
Ref. [17], H has been diagonalized and the ground state
reads in spatial representation [ ~x ¼ ðx1; . . . ; xNÞ]
�Nð ~xÞ ¼ const� Y

1�i<j�N

ðxi� xjÞ

� exp

�
� 1

2N

�
1

l2
� 1
~l2

�
ðx1þ���þ xNÞ2� 1

2

1
~l2
~x2
�
:

(7)

(Note its structural similarity to Laughlin’s ground state
wave function describing the fractional quantum Hall
effect [18]. Moreover, the polynomial in front of the expo-
nential function is the Vandermonde determinant and by
omitting it we obtain the ground state in the bosonic
N-particle Hilbert space.)
The spectrum and its properties.—We now outline the

calculation of the spectrum �ð�Þ as a function of the
coupling. We omit details of this tedious but mostly
straightforward computation, presenting the final result,
together with some conceptual insights obtained along
the way.
The 1-RDO is calculated by integrating out N � 1 coor-

dinates of the N-fermion state �Nð ~x; ~x0Þ ¼ �	
Nð ~xÞ�Nð ~x0Þ.

An exercise in Gaussian integration and integration by
parts yields

�1ðx; x0Þ ¼ pðx; x0Þ exp½��ðx2 þ x02Þ þ �xx0�;
where p is a symmetric polynomial of degree 2ðN � 1Þ in
the variables x, x0 originating from the Vandermonde
determinant in (7), and � and � some constants depending

on l, ~l and N.
If the fermions do not interact with each other, the

ground state j�Ni is a single Slater determinant and the
spectrum of its 1-RDO is trivial, i.e.,
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�ð� ¼ 0Þ ¼ ð1; . . . ; 1|fflfflffl{zfflfflffl}
N

; 0; . . .Þ: (8)

The regime of weak interaction can be characterized by
the condition jDj 
 m!2 or, equivalently, � � 0. We thus
employ degenerate perturbation theory to obtain �ð�Þ
around � ¼ 0. The reason we employ the parameter � is
that one can prove a duality

�kð�Þ ¼ �kð��Þ 8k; (9)

relating the spectra for attractive (� < 0) and repulsive
(� > 0) fermion-fermion interaction (interestingly, that
this duality holds is not obvious on the level of ground-
state wave functions). This immediately implies that the
expansion �ð�Þ contains only even order terms, simplify-
ing the perturbation theory.

The solution for N ¼ 3 reads:

1� �1 ¼ 40

729
�6 � 1390

59049
�8 þOð�10Þ;

1� �2 ¼ 2

9
�4 � 232

729
�6 þ 3926

10935
�8 þOð�10Þ;

1� �3 ¼ 2

9
�4 � 64

243
�6 þ 81902

295245
�8 þOð�10Þ;

�4 ¼ 2

9
�4 � 64

243
�6 þ 73802

295245
�8 þOð�10Þ;

�5 ¼ 2

9
�4 � 232

729
�6 þ 3976

10935
�8 þOð�10Þ;

�6 ¼ 40

729
�6 � 2200

59049
�8 þOð�10Þ;

�7 ¼ 80

2187
�8 þOð�10Þ;

�8 ¼ Oð�10Þ;
..
. ..

.

(10)

Similar results follow for N ¼ 2. Note the nontrivial hier-
archy of the eigenvalues,

�k ¼ ck�
2k�6 þOð�2k�4Þ; (11)

for all k � 5. Moreover, the spectrum � for � not too large
is very close to the one of a single Slater determinant. For
instance, �i, i ¼ 1, 2, 3 deviate from 1 and �j, j � 4 from

0 only by at most 1 percent if j�j � 0:5. This emphasizes
the relevance of the Pauli constraints (1).
Quasipinning by generalized Pauli constraints.—

Equipped with the explicit solution (10), we can proceed
to analyze whether the generalized Pauli constraints play a
role for the ground state. While the underlying 1-particle
Hilbert space H1 is infinite dimensional, the scaling (11)
implies that the spectrum is strongly concentrated on a
low-dimensional subspace, at least for small �. One can
use this fact to deduce statements about the position of the
total eigenvalues from truncated information alone.
This can be understood from simple geometric consid-

erations. Let d < d0 <1. Because a d-dimensional
1-particle Hilbert space can be imbedded into any (larger)
d0-dimensional one, one sees that the convex polytope
PN;d is nothing but the intersection between PN;d0 and

the set of spectra with only d nonzero eigenvalues (see
also Ref. [15]). Hence, any facet of PN;d arises from the

intersection of some facet of PN;d0 with the subspace of

said spectra. Formally, a facet F0 of PN;d0 consists of points

saturating a generalized Pauli constraint

D0ð�Þ ¼ �0 þ
Xd

i¼1

�i�i þ
Xd0

i¼dþ1

�i�i � 0: (12)

Denote the first two summands by Dð�trÞ, where �tr ¼
ð�iÞdi¼1 is the truncated spectrum. Clearly, Dð�trÞ ¼ 0
describes the restriction of the facet to the d-dimensional
setting. Now assume the truncated spectrum �trð�Þ is not
pinned, i.e., D½�trð�Þ�> 0, then the hierarchical scaling
(11) implies

D0ð�ð�ÞÞ ¼ Dð�trð�ÞÞþOð�2d�4Þ; (13)

which is positive for � small enough. Hence the full
spectrum �0 also fails to be pinned. The case d0 ¼ 1works
in the same way, up to some mild assumptions (see
Ref. [15]).
We will now apply these considerations to our model.

First, we truncate to six dimensions, which has the advan-
tage that the spectral polytope corresponding to ^3½H 6� is
three dimensional and can thus be visualized. In a second
step, we take a seventh eigenvalue into account. This
setting turns out to be strong enough to establish all state-
ments we have mentioned above—namely that the total
spectrum is not exactly pinned, but does lie close to the
boundary (quasipinned).
The simplest nontrivial setting ^3½H 6� becomes an

appropriate description if �7; �8; . . . � 0. By (11), this
condition is fulfilled if � is small enough that contributions
of order �8 can be neglected. Choosing �4, �5, and �6 as
free parameters according to (2), the corresponding poly-
tope P 3;6 effectively reduces [16] to a three-dimensional

polytope P � R3 with vertices,

FIG. 1. Spectral ‘‘trajectory’’ vð�Þ (thick line, partially cov-
ered by facet, schematic) up to correction of order �8 and small
part of the polytope P around vertex vðaÞ obtained by cutting P
along the dashed lines.

PRL 110, 040404 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

25 JANUARY 2013

040404-3



vðaÞ ¼ ð0; 0; 0Þ; vðbÞ ¼
�
1

2

1

2
; 0

�
;

vðcÞ ¼
�
1

2
;
1

4
;
1

4

�
; vðdÞ ¼

�
1

2
;
1

2
;
1

2

�
:

(14)

Hence the vertex vðaÞ corresponds to single Slater deter-

minants and the 2-facet spanned by vðaÞ, vðbÞ, and vðcÞ is
defined by Dð6Þ ¼ 0, which is here the one of interest and
represents exact pinning by constraint (3). We first illus-
trate schematically our result (10) in Fig. 1. There, the
spectral ‘‘trajectory,’’

vð�Þ ¼ ð�4ð�Þ; �5ð�Þ; �6ð�ÞÞ;

is shown as a thick line (neglecting effects of order �8 and

higher). It starts at the vertex vðaÞ which corresponds to the
noninteracting situation � ¼ 0. When increasing the

fermion-fermion interaction, vð�Þ leaves the vertex vðaÞ

and moves along the edge (vðaÞ, vðbÞ), the distance to vðaÞ
growing as �4. On the finer scale �6, vð�Þ also moves away
from the edge but is still pinned to the boundary of the

polytope, lying on the 2-facet spanned by vðaÞ, vðbÞ, and
vðcÞ. This is the bottom area in Fig. 1, corresponding to the
constraint (3).

The pinning seems to disappear if we consider higher
orders. From (10), we can infer that the distance to the 2-

facet (vðaÞ, vðbÞ, vðcÞ) increases as �8,

Dð6Þð�Þ ¼ � ð6Þ�8 þOð�10Þ; (15)

with � ð6Þ ¼ 4510
59049 . However, this calculation is inconclu-

sive, as the distance to the boundary is of the same order,
�8, as the truncation error [recall (13)].

To resolve the issue, we take another eigenvalue, �7, into
account. We thus work in the setting ^3½H 7� with four

constraints Dð7Þ
i � 0 for i ¼ 1; . . . ; 4 [4]. This setting is

valid as long as �8, �9; . . . � 0 or in other words we neglect
terms of order �10 or higher (but in contrast to the setting
^3½H 6�we include �8� terms). Since the polytope is now
six dimensional we cannot present our results graphically
anymore. The results (10) lead to (i ¼ 1, 2, 3, 4)

Dð7Þ
i ¼ � ð7Þi �8 þOð�10Þ; (16)

with � ð7Þ1 ¼ 20
2187 , �

ð7Þ
2 ¼ 10

243 , �
ð7Þ
3 ¼ 50

2187 , �
ð7Þ
4 ¼ 2890

59049 . Here

in the ^3½H 7� analysis, the new result is that all four

distances Dð7Þ
i are nonzero to a smaller order, �8, than the

error of spectral truncation, �10. Together with the com-
ments at the beginning of this section, this shows that the
absence of pinned spectra is genuine, rather than an artifact
of the truncation. Given this, the quasipinning found here is
surprisingly strong. In particular, it exceeds by four addi-
tional orders the (quasi)pinning by Pauli’s exclusion prin-
ciple constraints (1),

0�1��2ð�Þ; 1��3ð�Þ; �4ð�Þ; �5ð�Þ¼2

9
�4þOð�6Þ:

(17)

Generalizing Hartree-Fock.—In this section, we discuss
what conclusions can be drawn about the N-fermion state
j�i itself, given information just about the position of the
eigenvalues of the corresponding 1-RDO relative to the
boundary of the spectral polytope. In this way, quasipinned
spectra are endowed with a physical significance. To this
end, recall the basic fact that the spectrum �Sl ¼
ð1; . . . ; 1; 0; . . . ; 0Þ can only arise from a Slater determinant
j�i ¼ j1; . . . ; Ni. It is well-known that this statement is
stable under small deviations: if � � �Sl, then j�i is well
approximated by a Slater determinant (see Ref. [19] or
Ref. [15]).
For exactly pinned spectra, there is a simple general-

ization of these observations. In Ref. [16], it is stated that
constraint (3) can be saturated only by states of the form

j�i ¼ �j1; 2; 3i þ �j1; 4; 5i þ �j2; 4; 6i;
a fact is dubbed ‘‘selection rule’’ for Slater determinants
(see also Ref. [15]). The general statement reads: if
Dð�Þ � 0 is a generalized Pauli constraint, then Dð�Þ ¼
0 can only be achieved by states j�i which are super-
positions of those Slater determinants whose (unordered)
spectra also saturate D.
What is more important, a stable version of this statement

applying to quasipinned states can be found—at least for
specific situations. In Ref. [15], we show that for the
Borland-Dennis setting, spectra in the vicinity of the facet
corresponding to constraint (3) are approximately of the
form above. In particular, quasipinned states are close to
states containing fairly low amounts of multipartite entan-
glement as quantified by the Schmidt number [20]. We
believe that these findings open up a potentially significant
avenue for investigating the structure of fermionic ground
states via their natural occupation numbers—generalizing a
program that has long been carried out for the Hartree-Fock
case [19].
We close by speculating that these insights could give

rise to improved numerical procedures. The idea is to
replace the ground state ansatz of one single Slater deter-
minant by the states corresponding to the points lying on
the (quasi)pinning polytope facet. In contrast to the con-
figuration interaction methods in quantum chemistry,
which improve the Hartree-Fock approximation by adding
several arbitrary Slater determinants to the Hartree-Fock
state, our method would add only a few, but carefully
chosen, additional Slater determinants.
Conclusions.—For a natural model of interacting fermi-

ons in a harmonic trap we analytically calculated the
leading orders of the eigenvalues of the 1-RDO corre-
sponding to the fermionic ground state as a function of
�, a measure for the fermion-fermion interaction strength.
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The investigation of the generalized Pauli constraints has
shown that none of them is completely saturated, which
might be a generic property of all continuous models of
interacting fermions. In particular, the findings show that it
is likely extremely challenging to use numerical methods
to distinguish between genuinely pinned and mere quasi-
pinned states. This underscores the need for analytical
analyses, first provided here. On the other hand the pinning
up to corrections of order �8 we found here is surprisingly
strong. In particular, it exceeds the one by the Pauli exclu-
sion principle constraints (1), which are pinning up to
corrections of order �4 only.
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