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Intrinsic Photoconductivity of Ultracold Fermions in Optical Lattices
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We report on the experimental observation of an analog to a persistent alternating photocurrent in an
ultracold gas of fermionic atoms in an optical lattice. The dynamics is induced and sustained by an
external harmonic confinement. While particles in the excited band exhibit long-lived oscillations with a
momentum-dependent frequency, a strikingly different behavior is observed for holes in the lowest band.
An initial fast collapse is followed by subsequent periodic revivals. Both observations are fully explained
by mapping the system onto a nonlinear pendulum.
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Photoconductivity describes the change of a material’s
conductivity following an excitation with photons. If the
photon energy is resonant with a band transition, electrons
are excited from the valence band to the conduction band
and an initial insulator becomes conducting [1]. Today,
photoconductivity is widely used in technological applica-
tions such as semiconductor photodiodes and photoresis-
tors. It also provides a powerful probe for novel materials,
such as graphene [2], transistors made from carbon nano-
tubes [3], or semiconductor nanowires [4]. To extend the
understanding of such complex materials, atomic quantum
gases have proven to be powerful model systems. In this
context it is desirable to develop and adopt versatile prob-
ing methods [5-7]. Owing to its excitational structure in
several bands, photoconductivity can provide deeper
insight into intra- and interband dynamics as well as orbital
effects, which gained much interest in recent years. In the
field of quantum gases, multiband interactions and dynam-
ics have been experimentally studied mainly with bosonic
atoms [8—17], whereas little work has been performed with
fermionic atoms [18-20].

In this Letter, we thoroughly study experimentally and
theoretically the particle and hole dynamics of fermionic
atoms in an optical lattice. Analogous to photoconductivity
measurements in solid state physics, we create uncoupled
particle and hole excitations using lattice amplitude
modulation. The subsequent dynamics in the combined
harmonic and periodic potential is reminiscent of a non-
linear pendulum, which is a paradigm for nonlinear dy-
namics and is used to model many different quantum
systems, like ultracold bosons in a double-well potential
[21], spinor Bose-Einstein condensates [22], semiconduc-
tor heterostructures [23], and Josephson junctions [24]. In
an optical lattice, each individual band independently
resembles a pendulum with a different nonlinearity, lead-
ing to very distinct dynamics. As a direct consequence, the
atoms in the excited band undergo pronounced long-lived
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oscillations with a momentum-dependent frequency. In
strong contrast, we observe a fast closing of the holes in
the lowest energy band followed by periodic rephasings
with a slowly decaying revival amplitude. This behavior
stems from the stronger nonlinearity in the lowest energy
band caused by the smaller bandwidth as compared to the
excited band.

In photoconductivity measurements, insulators or semi-
conductors are irradiated with photons which excite elec-
trons to the conduction band at the same time leaving
vacancies in the valence band (holes). Both particle and
hole excitations lead to finite conductivity, which can be
measured via a photocurrent induced by an external poten-
tial. In our system, the photons are mimicked by lattice
amplitude modulation, which transfers zero quasimomen-
tum to the system. The frequency of the modulation deter-
mines the excitation energy and the initial quasimomentum
qo [see Fig. 1(a)]. In close analogy to conventional photo-
conductivity, we create particle (hole) excitations in the
second excited (lowest) energy band of the optical lattice,
corresponding to the conduction (valence) band. Note that
the created excitations are localized in momentum space in
contrast to spatially localized particle-hole excitations in,
e.g., Mott insulating systems. Instead of measuring a cur-
rent through the system, we follow the periodic dynamics
of the atoms completely momentum resolved using absorp-
tion imaging after time of flight. The specific dynamics of
particle and hole excitations is induced by an external
harmonic confinement, typical for ultracold atom experi-
ments. The total Hamiltonian including harmonic and
periodic potential has the form

]72

1
+ SE, cos(kgzx)? + Emw%xz,

(1)
with the particle mass m, E, = h’k%,/2m, kg; = 27/ A,

the lattice laser wavelength A, and the external trapping
frequency wg. s determines the lattice depth. The time
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FIG. 1 (color online).

=
X
1S
3
<
[)
. W e
I [ ({((© :
-2 e = s ==
-3
0 4 8 12 16
position time (ms)

(a) Principle of particle and hole excitation at a certain quasimomentum ¢ via lattice amplitude modulation

(dotted lines) and subsequent band mapping process (solid lines) in momentum space. (b) Sketch of the semiclassical phase space of
the lowest band (bottom) and second excited band (top). Solid lines depict equal-energy orbits. The shaded area corresponds to the
occupied phase space after the lattice amplitude modulation. Due to the different bandwidths, the excited particles occupy only a small
region of phase space around a single equal-energy orbit, while the holes are spread over many different orbits. The phase space
evolution takes place clockwise along equal-energy orbits (indicated by arrows). (c) Typical photocurrent measurement after excitation
to the excited band at 10E,. Shown are the column densities of the momentum distribution at different times after the excitation. Atoms
in the lowest band are represented by the central plateau. The excitations in the upper band clearly oscillate in momentum space.

evolution of fermions in such a potential can be described
in a semiclassical phase space [25]. In the tight-binding
and single-band approximation, the corresponding energy
function Hgc has the form of a nonlinear pendulum, with
momentum and position interchanged [26],

Hgc(x, ¢) = —2J cos(mq) + %xZ, )

where v = mw3(A/2)? and J is the tunneling matrix ele-
ment [19]. If the tight-binding approximation is not valid,
the momentum-dependent part —2J cos(rg) must be
replaced by the band dispersion EEZ"). This leads to a non-
linear pendulum with a slightly different potential energy
than in (2). Figure 1(b) shows the phase space both for the
lowest band and the second excited band. Note the exis-
tence of a separatrix, where all inner states correspond to
closed orbits and all outer states are localized in space [27].
For the excited band the phase space volume contained
within the separatrix is much more extended along the
coordinate space direction as compared to the lowest
band. This is due to the different bandwidths given by

the individual energy dispersions ESI") and leads to the
pronounced difference in the behavior of particles in the
excited band compared to holes in the lowest band dis-
cussed below.

To measure the time evolution of the photocurrent, we
prepare either a spin-polarized, noninteracting Fermi gas
with m = 9/2 or an interacting binary spin mixture of
m = —9/2 and m = —5/2 in the f = 9/2 ground state
manifold of “°K [28]. We excite the system via lattice
modulation [19,29,30] and detect the quasimomentum dis-
tribution by performing adiabatic band mapping followed

by resonant absorption imaging after typically 15 ms time
of flight [19,31]. Recall that the band mapping technique
maps particles in the different bands onto their respective
Brillouin zones.

A typical time evolution in a noninteracting gas is shown
in Fig. 1(c). The atoms in the excited band exhibit a
pronounced oscillation in momentum space. Note that
the excitations carry no net current, since always two
counterpropagating excitations with quasimomenta g and
—gq are created due to the inversion symmetry of the band
structure. The lifetime of the excitations is on the order of
100 ms, which indicates a recombination between particles
and holes that is slow relative to the typical oscillation
period. In contrast, for these specific experimental parame-
ters, the holes in the lowest energy band apparently close
very fast within the first 2 ms.

Related results have been obtained in Ref. [13], using
bosonic atoms excited to higher bands. In contrast, with
fermions we are able to create and to observe elementary
hole excitations, as well as obtain a full momentum reso-
lution for the dynamics in higher bands. This is due to the
Pauli principle, i.e., the population of a Fermi sea, funda-
mentally different from a Bose-Einstein condensate con-
sisting of only one single macroscopically occupied wave
function, where the concept of a hole in momentum space
is not meaningful and the momentum resolution is limited
by the very small momentum width in the lowest band.
Both aspects are at the heart of the results presented in the
following. We first concentrate on the excited particles
and later comprehensively discuss the hole dynamics.
Figures 2(a) and 2(b) show the results of photocurrent
measurements for a large set of different parameters.
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FIG. 2 (color online). (a) Comparison of measured frequencies
with the results of (3) for different lattice depths and quasimo-
menta. Filled symbols represent measurements with noninteract-
ing mixtures. Open symbols show data with interacting mixtures.
(b) Oscillations in momentum space of the particles in the
excited band at 10E, for two different trapping frequencies,
wo = 27 X 66 Hz (circles) and wy = 27 X 50 Hz (diamonds).
Solid lines are fits to the data. Extracted oscillation frequencies
are w =2 X (148 = 5)Hz (circles) and w =27 X (107 +2)Hz
(diamonds). (c) 1/e lifetime of particles in the second excited
band as a function of the scattering length for a three-
dimensional lattice of 8E,. All error bars solely correspond to
fit errors, representing two standard deviations.

Three key observations can be drawn from the experimen-
tal data: First, the oscillation frequency w linearly depends
on the bare trapping frequency w,. Second, w strongly
depends on the initial quasimomentum ¢, and third, w
decreases with increasing lattice depth s.

We now explain all of these observations within the
semiclassical nonlinear pendulum picture. As shown in
Fig. 1(b), the excited particles are well localized in the
phase space of the upper band and occupy approximately
only one single equal-energy orbit. Hence, we model them
as a single point in phase space with a given initial quasi-
momentum g, and corresponding energy E(q), located at
the center of the trap. With these initial conditions, the
resulting equations of motion can be solved to yield [28]

T q E -
o) = oo | [Mdaf o) )
AU

The results of (3) are shown in Fig. 2(a) in comparison to
the experimental data and show excellent agreement:
Equation (3) directly confirms the linear dependence of
w on w(. More generally, the strong dependence of w on g
is an immediate consequence of the nonlinear pendulum
behavior. In particular, for go— *1, the excitation
approaches the separatrix, where the nonlinear pendulum
dynamics is dramatically slowed down and the system

eventually reaches a steady state. This is reflected in
the strong decrease of the observed frequencies at large
qo, visible in Fig. 2(a). The dependence of w on the
lattice depth stems from the dependence of the band dis-

persion E(qz) on s in (3). For small ¢, corresponding to
small displacements of the pendulum, which lead to a
harmonic oscillator behavior, this can be explained in an
intuitive picture. In this case, the oscillation frequency
depends on the curvature of Eﬁ,z) around ¢ = 0, which is
dzEEIZ) /dq?| 4=o0- This curvature decreases with increasing
lattice depth, leading to a corresponding decrease of w as
observed in the experiment. To check the validity of the
semiclassical approach, we compared the results of (3)
with a numerical single particle calculation using (1) and
find perfect agreement, as shown in Ref. [28].

We further investigated the influence of interactions on
the dynamics and lifetime of the particles in the excited
band using a Feshbach resonance at 224 G [32]. We
observe no effect on the oscillation frequency, whereas
we find a substantially reduced lifetime of the atoms in
the second excited band for stronger interactions as shown
in Fig. 2(c). Since the total loss of particles is independent
of the scattering length as we checked independently, these
results can be regarded as a measure for the recombination
of particles and holes.

We now return to the hole dynamics in the lowest energy
band. In the photoconduction measurement of Fig. 1(c),
we observe a fast reduction of the hole depth within
a few ms. This is shown in detail in Fig. 3(a), for a set of
different trapping frequencies. The fast closing cannot be
explained by recombination with excited atoms, which
have a much longer lifetime, as outlined in the preceding
paragraph.

To describe the holes theoretically, we adopt a descrip-
tion from solid state physics, where holes in a completely
filled valence band can be regarded as particles with nega-
tive mass [28]. As sketched in Fig. 4, the phase space
distribution of the hole spans over many different equal-
energy orbits. This crucial difference as compared to the
excited atoms stems from the much smaller bandwidth of
the lowest energy band and leads to more complicated
dynamics for the holes. Initially, the phase space distribu-
tion basically rotates, leading to a fast reduction of the
observed hole depth, which is obtained by projecting the
phase space distribution onto the quasimomentum axis. For
small lattice depth this rotation persists for longer times
leading to a revival of the hole in quasimomentum space
after multiples of half a rotation in phase space. Indeed, in a
measurement specifically addressing this parameter
regime, we are able to observe this coherent hole dynamics
[Figs. 3(b) and 3(d)]. For strongly nonlinear systems, as
realized in deeper lattices, the revival is prevented, since
the nonlinearity leads to a deviation from the simple rota-
tion by introducing momentum-dependent oscillation fre-
quencies as in the excited band. Especially for states
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FIG. 3 (color online). (a) Time evolution of hole depth relative
to the maximum depth at 10E, and ¢, = 0.5 for different
trapping frequencies w/27r, as given in the legend. Solid lines
are semiclassical simulations as described in the text.
(b) Rephasing of the hole in quasimomentum for longer evolu-
tion times at 2F,, g, = 0.0, and wy = 27 X 63 Hz. Solid line is
a semiclassical simulation. (¢) Rescaled time evolutions from (a)
with scaling factors w% as derived from (4). The different
simulations are not discernible due to the perfect scaling behav-
ior. (d) Momentum resolved data of (b). Only the first Brillouin
zone is depicted.

outside the separatrix, this leads to a fast dephasing of the
initial phase space distribution, resulting in an irreversible
disappearance of the holes on our experimental time scales.

To explore the de- and rephasing of the holes in the
nonlinear pendulum picture, we performed simulations on
the semiclassical phase space, using the truncated Wigner
approximation method [33,34] for an initial hole distribu-
tion which is Gaussian both in momentum and spatial
coordinates, with a width Ag in momentum space and
Ax = 1/Aq in coordinate space. This corresponds to a
coherent superposition of lattice eigenstates as explained
in Ref. [28]. Figures 3(a) and 3(b) demonstrate the excel-
lent agreement of the simulations with our experimental
data. Within the semiclassical description, it is also pos-
sible to derive an analytical expression for the hole dy-
namics valid for times ¢t < 7, 7. 7, = h/~2Jv is the
typical time scale for a full rotation in phase space at small
amplitudes. 7, = hAx/mJsin?(mq,) is the time scale for
the change of the real space distribution due to the phase
space rotation. We find the time-dependent depth D(¢) of
the hole to be [28]
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FIG. 4 (color online). (a)—(d) Sketch of the hole dynamics at
go = 0. For short times, the distribution predominantly rotates.
For certain parameters a periodic revival of the hole is observed.
For long times ¢ >> 7 all trajectories dephase and the hole
signature is lost. (e)—(f) Projection of the hole distribution
onto momentum space.

T = har? Aq? /v compares the hole width in momentum
space Ag to the trap energy, which is a measure for the
coupling of different momentum states. Thus 7 sets the
time scale for changes in the momentum distribution due to
rotations in phase space. From (4) we find that the holes are
stabilized for broader wave packets and lower trapping
frequencies. In particular, the hole depth scales as T «
1/ w3, which allows for stable holes even at moderately
low trapping frequencies. Figure 3(c) shows the rescaled
simulations and experimental data, confirming the 1/}
scaling. As for the excited particles, we performed single
particle calculations with (1) and find very good agreement
with the semiclassical description for all parameters [28].

In conclusion we have presented a comprehensive study
of the dynamics of an excited Fermi gas in an optical
lattice, reminiscent of photoconductivity measurements
in solids which extends the available techniques to explore
dynamical properties of optical lattice systems. We obtain
an intuitive and quantitative description of all experimental
findings by mapping our system onto the semiclassical
phase space of a nonlinear pendulum. In particular, this
correctly describes the strikingly different dynamics of
particles in the excited band and holes in the lowest energy
band. Our results provide the first investigation of holes in
momentum space in an ultracold quantum gas in an optical
lattice and thus constitute an important contribution
towards a more complete understanding of ultracold
atoms in periodic potentials. They may also prove crucial
for further studies on particle-hole excitations such as
excitons [35] and give strong connections to exciting con-
densed matter systems, which show a similar dynamical
behavior [23,24].
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