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The photon creation and annihilation operators are cornerstones of the quantum description of the
electromagnetic field. They signify the isomorphism of the optical Hilbert space to that of the harmonic
oscillator and the bosonic nature of photons. We perform complete experimental characterization
(quantum process tomography) of these operators. By measuring their effect on coherent states by means
of homodyne tomography, we obtain their process tensor in the Fock basis, which explicitly shows the
“raising”” and ‘“lowering” properties of these operators with respect to photon number states. This is the
first experimental demonstration of complete tomography of nondeterministic quantum processes.
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Introduction.—Quantum operators of annihilation a and
creation @' of bosonic particles act on states with a definite
number m of identical particles, resulting in that number
being incremented or decremented, respectively:

atlmy=+vm+ 1lm + 1), alm) = Jmlm — 1). (1)

First proposed by Dirac in 1927 [1], these operators play a
major role in many fields of physics and chemistry: quan-
tum mechanics, quantum optics, quantum chemistry,
quantum field theory, and condensed matter physics.
Specializing to optics, they are instrumental in the quantum
description of light, giving rise to many fundamental
phenomena such as spontaneous emission, Lamb shift,
Casimir force, and lasing. Equally important is practical
implementation of photon creation and annihilation, which
provides a necessary component of a universal toolbox for
manufacturing arbitrary quantum states of light, required
for quantum information processing and quantum commu-
nications [2,3].

Implementation of & and at is, however, challenging.
This is because these operators do not preserve the trace of
a state’s density matrix, which means they cannot occur in
the framework of deterministic Hamiltonian evolution of a
physical system. Therefore, bosonic creation and annihila-
tion can be realized in the laboratory only in an approxi-
mate, nondeterministic fashion. That is, the action of the
operators occurs with probability less than one, but is
heralded by a classical event.

One possible realization of photon annihilation in optics
employs a low reflectivity beam splitter, through which the
target state |i) is transmitted [Fig. 1(a)]. Detection of a
single photon in the reflection channel indicates that this
photon has been removed from state | ). In this case, the
state emerging in the transmission channel of the beam
splitter is approximated by a| ).
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Photon creation can be achieved using low-amplitude
spontaneous parametric down-conversion (SPDC) in a
nonlinear optical crystal. The target state enters the signal
SPDC mode from the back of the crystal [Fig. 1(b)]. When
SPDC occurs, operators a' act simultaneously on both the
signal and the idler modes. If this event is heralded by the
photon detector in the idler channel, the target state
becomes at|y) [4].

The first successful realization of the optical photon
creation operator in this manner in 2004 [5] gave rise to
anew class of states known as photon added state. In 2006,
Ourjoumtsev and colleagues applied the photon annihila-
tion operation to the squeezed states generating optical
superpositions called cat states [6]. Neergaard-Nielsen
et al. generalized this approach in 2010 to generating
arbitrary continuous-variable qubits [7]. In 2007, Parigi
et al. verified noncommutativity of 4 and at in application
to the thermal state [8]. The photon annihilation operator
has been used for continuous-variable entanglement
distillation in 2010 by Takahashi and co-workers [9].
Experimental recording of photon creation and annihila-
tion events in the time domain has been reported by
Gleyzes et al. [10].

The present work offers an experimental study of @ and
a' as quantum “black boxes,” or quantum processes. By
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FIG. 1 (color online). Experimental setups for photon annihi-

lation (a) and creation (b). The processes are heralded by
“clicks” in single-photon detectors.
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probing them with coherent optical states (weak laser
pulses) of different amplitudes and subjecting the output
electromagnetic field to optical homodyne tomography
[11,12], we determine how these black boxes would affect
any arbitrary state of light within a practically relevant
subspace of the optical Hilbert space. As a result, we
explicitly observe their action on the photon number states
to be in accordance with Eq. (1).

Coherent-state  quantum-process  tomography.—QOur
method of characterizing quantum processes relies on the
optical equivalence theorem. According to that theorem,
the density operator p of an arbitrary state can be written as
a linear combination of coherent-state density operators,

p= [Pl@ladalda @)

where P,(a) is the Glauber-Sudarshan P function of
state p. Further, since every quantum process £ (in this
case, photon creation and annihilation) is a linear map
with respect to density matrices, we can write the process
output as

£(p) = [ P,E(laXal)da. 3)

If we know E(|a){«a|) for every coherent state |a), we can
determine the process output £(p) for any state p.

This is of benefit because optical states used in quantum
information processing (for example, number states or
their superpositions) are highly nonclassical and cannot
be generated easily. In contrast, coherent states are directly
obtained from lasers. Our method permits us, by probing
the black box with regular laser pulses, to learn its effect on
any other state of light, however complicated it may be.
Previously, this approach, referred to as coherent-state
quantum process tomography (csQPT) [13-15], has been
applied to the processes of attenuation, phase shift [13],
and quantum optical memory [16]. A closely related
method has been used for the quantum characterization
of optical detectors [17-20].

The result of csQPT—the data about the process—can
be compactly written in the form of a process tensor. This
is a rank-4 tensor £ "' such that, for any process input p, the
density operator of the process output in the photon num-
ber basis is given by [E(p)]jx = X, 1 E5Y" Pumn- The process
tensor is calculated according to

gm = f Pon(@jlE(aXaD e, @)

where P,,(a) is the P function of operator |m)(n|.
Computation of the process tensor is complicated by the
highly singular nature of this function; Refs [13-15,21]
elaborate different ways of resolving this complication.
Another practical issue is associated with the infinite
dimension of the optical Hilbert space. In csQPT experi-
ments, the process tensor is evaluated for a subspace

H (n,,) spanned by number states up to a certain cutoff
value, n.,.. The choice of n,,, is determined by the
maximum amplitude o, of the set of coherent probe
states used in the experiment, as well as the reconstruction
method used. In our work, n,, = 7.

Experiment.—The primary light source is a mode-
locked Ti:sapphire laser (Coherent Mira 900), which emits
transform-limited pulses at ~790 nm with a repetition rate
of 76 MHz and a pulse width of ~1.6 ps. Heralding
photons are registered by PerkinElmer SPCM-AQR-14-
FC single-photon detectors. The field quadratures of the
output states are measured by means of high-bandwidth
balanced homodyne detectors [12,22,23]. Both the probe
field and the local oscillator field for homodyne detection
are obtained from the master laser. The amplitude of the
probe field is controlled by a set of half-wave plates,
polarizers and attenuators.

In order to obtain SPDC, required for the photon crea-
tion, the light from the master laser is frequency doubled
in a single pass through a 17-mm long lithium triborate
crystal, yielding a typical ~80 mW average second-
harmonic power after spatial filtering. This field is focused,
with a waist of 100 wm, into a 2-mm long periodically
poled potassisum-titanyl phosphate crystal phase matched
for type II SPDC. The signal and idler modes are spatially
and spectrally degenerate but are of orthogonal polariza-
tion [24,25].

State transformation.—We acquire a set of field quad-
rature data for the outputs of both processes for a set
of probe coherent states with amplitudes ranging from
0 to about 1 [4]. For the photon annihilation process,
the output states are almost identical to the input states,
as they only undergo slight attenuation in the beam
splitter [Fig. 1(a)]. This is to be expected, because
coherent states are eigenstates of a. Photon creation,
on the other hand, significantly changes the character of
the input state, producing highly nonclassical single-
photon added coherent states, studied in detail theoreti-
cally by Agarwal and Tara [26], experimentally by
Zavatta and co-workers [5,8].

The processes we study are nondeterministic, and their
probability of occurrence depends on the input state.
Accounting for this dependence is crucial for the correct
reconstruction. In csQPT, this is done by renormalizing the
process output for the probe states so that Tr[E(|a){a|)] in
Eqgs. (3) and (4) is proportional to the probability of the
heralding event [14]. To illustrate the significance of this
step, it is instructive to apply Eq. (3) to the photon annihi-
lation operator, such that £(laXal) = |a|*|a)al. If the
coefficient |a?, responsible for the nondeterministic
nature of @, is neglected, we would obtain the identity
process. Hence, remarkably, the “lowering” feature of a
arises in csQPT due to the variation of the event probability
as a function of the probe amplitude, rather than trans-
formation of the probe state itself.
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The information on the heralding event probability is
obtained by keeping track of the photon count rates for
various input states. Theoretically, we expect these rates to
behave as

pra(a) = (alatala) = a?;
&)

pryt(a) = (alaat|a) =1+ a?.

The experimentally observed dependencies are consistent
with these expectations as displayed in Fig. 2.

We use an iterative algorithm, elaborated theoretically in
Ref. [15], to reconstruct the process tensors directly from
the acquired field quadrature data. The algorithm makes
use of the Jamiolkowski isomorphism between quantum
processes applied to Hilbert space JH and positive semi-
definite operators over the Hilbert space H ® HH [27]. In
this way, the task of process reconstruction is reduced to
the known problem of state reconstruction [12,28-30].
This scheme guarantees that the resulting process is physi-
cally consistent, i.e., completely positive. Furthermore, it
permits us to incorporate correction for experimental
imperfections into the reconstruction procedure, as we
discuss next.

Accounting for experimental imperfections.—Under
such imperfections we understand known factors that dis-
tort the measurement of the process output. For the anni-
hilation operator 4, these factors are the linear losses,
nonunitary quantum efficiency, and the electronic noise
of the homodyne detector [31]. All these effects can be
quantified and their cumulative contribution can be mod-
eled by an attenuator with transmission 7, = 0.75 placed
after a black box containing an ideal photon annihilation
operator [Fig. 3(a)]. This attenuator is accounted for in
maximum-likelihood homodyne reconstruction by modi-
fying the measurement operator associated with detecting
field quadrature values [11,15,28].

For the photon creation, one must additionally account
for the mode mismatch between the probe field and the
signal mode of parametric down-conversion, which is
determined by the mode of the pump and the optics in
the idler channel [32]. This mismatch is modeled by a
Mach-Zehnder interferometer with beam splitting ratio
T, and an ideal photon creation operator placed into one
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FIG. 2 (color online). Event count rate for the photon annihi-
lation (a) and creation (b) operators as a function of the input
coherent state amplitudes in the modes to which these operators
are applied. The solid lines show the expected theoretical
dependencies (5), with the vertical scale fit to the data.

of its arms [Fig. 3(b), top]. To determine T,, we observe
that, when the input |«;,) is in the vacuum state, the output
is expected to be a statistical mixture of the single-photon
and vacuum states, with the single-photon fraction equal to
T,T,. The output observed experimentally in this case is
indeed, to a high degree of precision, described by such a
mixture [24,33], with the single-photon fraction equal to
0.59. Knowing that 7| = 0.75, we conclude that T, =
0.59/0.75 = 0.79. With this model, if the coherent state
entering the interferometer is |a;,), the state entering the
black box is |a) = |/T,a;,). The latter is the amplitude
that we refer to in Fig. 2(b) and use in all calculations
associated with evaluating the process tensor of the photon
creation operator.

This model is corroborated by the photon statistics
observed in Fig. 2(b). The least-squares fit to the experi-
mental data yields pr,+(a) « 1 + 0.98a2, which is close to
the theoretically expected pr,t () = 1 + a?.

It is convenient to reformulate the Mach-Zehnder inter-
ferometer model in terms of the equivalent scheme shown
in the bottom panel of Fig. 3(b). The output of the black
box undergoes a linear loss channel with transmissivity
T,T, followed by phase-space displacement by AX =
J2T,(1 — T,)a;,. Therefore, prior to launching the itera-
tive algorithm with correction for a linear loss, we apply
inverse displacement to the measured quadrature data.
Namely, we subtract AX cosf from each experimentally
measured sample of quadrature observable X, = X cosf +
Psin®, where @ is the local oscillator phase.

Process reconstruction.—In order to apply the
Jamiolkowski isomorphism to the reconstruction of non-
deterministic processes, we introduce an additional, ficti-
tious state |@) into the Hilbert space. The process can then
be treated as deterministic: events in which no “click”
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(b)
>
BS(T3) BS(T) A(T))
-
= -
—>l—>'. i H—E >
A(T) AT ATy

FIG. 3 (color online). Model of experimental imperfections for
the photon annihilation (a) and creation (b) setups. The top and
bottom schemes in (b) are equivalent to each other. Notation: BS,
beam splitter; A, attenuator; the quantities in parentheses denote
the transmission of the corresponding optical element. D denotes
the operator of phase-space displacement by AX = /2T, (1 —
T,)a;,. The amplitude of the input coherent probe state is a;,
while « is the effective amplitude of the coherent state in the
mode acted upon by the operators.
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FIG. 4 (color online). The ‘“‘diagonal” values of the process
tensor &} of the photon annihilation (a) and creation (b)
reconstructed from the experimental data, with correction for
experimental imperfections. Each color corresponds to the pho-
ton number distribution in the output state for the Fock state |m)
at the input. Insets: Worst-case fidelities of the reconstructed
processes acting within subspaces FH L at(n) of the optical
Hilbert space spanned by number states [1),...,[n) and
|0), ..., |n — 1), for a and at, respectively.

occurred are interpreted as events in which the process has
generated state |@) in the output [14,27].

The reconstruction algorithm converges after about
2000 iterations. The diagonal elements £} of the obtained
process tensors are shown in Fig. 4. These elements permit
straightforward interpretation: they give the probability
that the output of the quantum black box contains k pho-
tons when the m-photon state is present at the input.
According to Eq. (1), we expect (£,)7" = méy,,—; and
(&) = (m + 1), ,+1. The experimental result is con-
sistent with this expectation and explicitly features the
“raising” and “lowering” properties of a1 and a. For input
state |m), the output state is similar to [m + 1) for operator
at and |m — 1) for operator a. The height of the bars in
the plots increases linearly with m, which is associated
with the squared factors +/m + 1 and \/m in the right-hand
sides of Eq. (1).

The consistency of the estimated process tensors with
those theoretically expected can be quantified using the
fidelity benchmark. We estimate the worst-case fidelity
between normalized states a|/), at|) and the respective
outputs &, 4+ (1)) of the reconstructed processes. The
processes are applied to pure states within subspaces
H fwf (n) of the optical Hilbert space spanned by number

genetic algorithm to identify the input state producing the

lowest fidelity in FH . ,1(n) and plot the corresponding

fidelity in the insets of Fig. 4. The fidelities decrease with
increasing n because, for high photon-number states, the
overlap with the probe states is low and hence the experi-
mental data do not provide sufficient information about the
effect of the process on these states [15]. As a result, for
each tensor element that has a relatively large value, we
observe small, but not negligible, values for the neighbor-
ing tensor elements.

Other primary factors contributing to systematic errors
in the process tensor estimations include the local oscil-
lator phase estimation uncertainty and the variation of the
mode-matching efficiency 7, between experimental runs.
In addition, the reconstructed tensor is affected by the
statistical uncertainties of quadrature probability density
measurements. In order to evaluate them, we simulate
multiple quadrature statistics data sets in each of which
the number of occurrences in each quadrature-phase bin
[15] is randomly varied within its standard deviation. Each
of these data sets is then used to reconstruct a process
tensor, and the collection of tensors obtained in this fashion
is analyzed to extract the standard deviation for each tensor
element. These standard deviations turn out to not exceed
an absolute value of 0.2, with the largest elements of the
process tensor exhibiting the highest uncertainties.

Summary.—We use the technique of coherent-state
quantum-process tomography to explicitly evaluate, for
the first time, the tensors of quantum optical photon crea-
tion and annihilation processes. The reconstructed tensors
exhibit raising and lowering properties of these operations.
This is the first experiment in which complete tomography
of trace-nonpreserving quantum processes has been
carried out.
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