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Experimental Realization of a Quantum Phase Transition of Polaritonic Excitations
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We report an experimental realization of the Jaynes-Cummings-Hubbard model using the internal and
radial phonon states of two trapped ions. An adiabatic transfer corresponding to a quantum phase
transition from a localized insulator ground state to a delocalized superfluid (SF) ground state is
demonstrated. The SF phase of polaritonic excitations characteristic of the interconnected Jaynes-
Cummings (JC) system is experimentally explored, where a polaritonic excitation refers to a combination
of an atomic excitation and a phonon interchanged via a JC coupling.
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The Jaynes-Cummings (JC) model [1,2] describing the
interaction between a quantized optical mode and a two-
level atom is one of the simplest and most important
models of light-matter interactions. An interconnected
array of multiple JC systems has recently been attracting
interest, and the model describing it is referred to as the
Jaynes-Cummings-Hubbard (JCH) model [3-9]; an experi-
mental realization of this model has remained to be done.
The JCH model was originally proposed for an array of
coupled optical cavities, each containing a two-level atom,
and is expected to exhibit properties peculiar to strongly
correlated systems [10-12].

In the JCH model for an array of coupled optical cav-
ities, photons naturally hop between neighboring cavities,
whereas the photon-photon interaction arises from a pho-
ton blockade [13], which impedes other photons from
entering an occupied cavity.

The JCH model has certain similarities to the Bose-
Hubbard (BH) model [11,12]. It approaches the pure bosonic
case in the large detuning and the large photon number limits
[3]. In contrast, in the limit of small detuning and small
phonon numbers, the coefficient for the on-site repulsion
becomes dependent on the photon number. In addition, the
conserved particles (polaritons or dressed atoms) transform
into various kinds of excitations (atomic excitations, pho-
tons, or polaritons) depending on the Rabi frequency and
detuning. As a result, a JCH system has a richer phase
structure compared with a BH system. Both photons and
polaritons can show superfluidity, while insulator phases can
be formed with both atoms and polaritons [6,7].

Recent advances in the ability to manipulate quantum
systems have made it possible to simulate a quantum
system using another controllable system (analog quantum
computation) [14]. Trapped ions offer high controllability
and individual access, and hence are suited for such appli-
cations [15,16]. Simulations of systems including spin
systems and relativistic electrons have been reported
[17-21]. Simulations of Hubbard models have also been
proposed for trapped ions [9,22]; however, an experimental
demonstration has remained to be done.
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The phonons in the radial (or transverse) direction of a
linear ionic chain, which have been used to mediate spin-
spin interactions [19,21], can also be used to simulate
systems of Bosonic particles under certain conditions
[22]. In contrast to the axial motion of ions in a linear
chain, which is described by collective modes that span
over the whole ionic chain, radial phonons under a suffi-
ciently tight radial confinement are essentially ‘local pho-
nons’ (phonons of local harmonic oscillations) undergoing
hopping from site to site with a rate slower than the local
harmonic-oscillation frequencies. We recently observed
this hopping of radial phonons using two trapped ions
[23]. Ivanov et al. [9] proposed to use a JC coupling arising
from optical excitation of the radial red-sideband transition
of a linear ionic chain to induce an effective phonon-
phonon coupling, thereby realizing the JCH model. In
this Letter, we report an experimental realization of the
JCH model and observation of a quantum phase transition
based on Ivanov er al. [9] In this case the conserved
particles are not merely phonons but composite particles
each of which is a linear combination of a phonon and an
atomic excitation.

The conceptual schematic of the JCH system using
trapped ions is shown in Fig. 1(a). It is assumed that two
ions with internal states {|g;), |e;)} and a resonance fre-
quency w are held in a linear Paul trap. Each of the ions
undergoes harmonic motion in a radial direction (referred
to as the x direction). Both ions are equally illuminated
with a laser of frequency w; and detuning 6 = w; — wy,
which is nearly resonant with the radial red-sideband tran-
sitions. Then the system is approximately governed by the
following Hamiltonian (a JCH Hamiltonian) [9]:
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FIG. 1 (color online). (a) Conceptual schematic of the JCH
system with two ions. Two ions are illuminated with an excita-
tion laser nearly resonant to the red-sideband transition with
which the JC coupling arises and dressed atoms or polaritons are
formed. Intersite hopping (k) is naturally incorporated from
Coulomb couplings, and along with effective on-site repulsion
between polaritons due to the JC coupling a Hubbard-type model
is formed. (b) Energy levels of “°Ca’ relevant to motional
cooling and induction of the JC coupling.

direction, in which w, is the oscillation frequency of a
single ion in the radial x directionand Aw, = —w? /4w, =
—e?/8megdymw, is the correction due to the Coulomb
interaction (dj is the interion distance and m is the mass
of one ion). g = 1n{),/2 is the coupling coefficient for the
red-sideband transition (JC coupling) where 7 is the
Lamb-Dicke factor and () is the on-resonance Rabi fre-
quency. &;r and d; are the creation and annihilation opera-
tors of phonons in the radial x direction of the jth ion, whose
Hilbert space is spanned by Fock-state basis |n) i (n=
0,1,2,...). 6 = le;}g;l and &; = |g;Xe;l| are the rais-
ing and lowering operators for the internal states. k =
w?/2w, = e*/4meydimo, is the hopping rate for the
radial x direction.

A JCH system is expected to show quantum phase
transitions between superfluid and insulator phases of
polaritons [5]. Here a ‘superfluid’ is a system that has
delocalized excitations and in which there is a correlation
between mechanical variables at different sites. On the
other hand, an ‘insulator’ is a system that has localized
excitations.

As an order parameter characterizing the quantum phase
transition, the variance of the total excitation number per
site. AN? = (N3) —(N;)?, where N; = aja; + le;Xejl,
can be used [5]. The expectation value of the annihilation
operator that is usually used in the mean-field limit cannot
be used as the order parameter, since it is always zero for a
closed system with no particle exchange with the outside
[5,7]. In addition, the atomic excitation number variance
ANZ; =(N; ;) — (N, )%, where N,; = le;}e;l, is also
used for judging the existence of polaritons.

The experimental setup used is similar to that described
in Ref. [23] and a brief description is given here. Two
40Ca™ ions are trapped in vacuum (5 X 107° Pa) using a
linear Paul trap. A rf voltage of 25 MHz is applied to
generate the radial confinements and dc electrodes provide
an axial confinement. The secular frequencies for the three
trap axes are (w,, o, w,)/27 = (2.1,1.7,0.17) MHz. The

interion distance in the axial direction d, is 18-20 pm and
correspondingly, the hopping rate x/27 is 57 kHz.

The energy levels relevant to motional cooling and induc-
tion of the JC coupling are shown in Fig. 1(b). The motion in
the radial directions is cooled by Doppler cooling using
the Sy /,-Py /2 (397 nm) and D3 ,-P; , (866 nm) transitions
and sideband cooling using the S,(m; = —1/2)-
Ds/p(m;=—5/2) (729 nm) and Ds/,-P5/, (854 nm) tran-
sitions. There are two collective modes in the x direction of
two ions, namely the center-of-mass (c.m.; in-phase) mode
and the rocking (out-of-phase) mode, just as in the case of
the axial motion [24]. The average quantum numbers after
the sideband cooling are (7, ¢ m., 7y rocks By c.m.» iy rock) =
(0.040.04,0.03+0.03,0.57 =0.11,0.08 £ 0.04). The axial
motion is cooled only by Doppler cooling. The ions are
intermittently optically pumped to S/, (m; = —1/2) by
using a 397-nm beam with the o~ polarization during and
after the sideband cooling. The excitation beam at 729 nm
for the S ,-Ds, transition, which is used to induce the JC
coupling and other operations, is oriented at 45°, 45°, and
90° relative to the x, y, and z directions, respectively. This
direction is chosen to couple the beam only to the radial
directions and to ignore the axial directions, whose secular
frequency is relatively small and hence less advantageous in
sideband cooling because of the large average quantum
number after Doppler cooling. Equal illumination of the
two ions with this beam is carefully optimized by adjusting
the beam position so that the intensity difference between
the two ions becomes less than 5%.

The internal state of the ions is determined by illuminat-
ing them with lasers at 397 nm (S /, to P, /, transition) and
866 nm (D5, to Py, transition) and by detecting fluores-
cence photons with a photomultiplier or an intensified
charge-coupled-device (ICCD) camera, with detection
times of 8 and 80 ms, respectively. Individual detection
of fluorescence from each ion is possible with the ICCD
camera. Due to unequal illumination intensity of the two
ions with the 397-nm laser, individual detection is possible
also when using the photomultiplier.

First, the dynamics of the JCH system with two ions is
observed. The total dynamics of the two-ion JCH system
arises from the JC coupling in individual atoms excited by
the excitation laser and intersite hopping [23]. When the
hopping rate « is much smaller than the JC coupling
coefficient g, a simple sinusoidal oscillation similar to
Rabi dynamics caused by the sideband excitation of the
local radial oscillation modes is expected, while for non-
negligible values of «, an interference between Rabi and
hopping dynamics is expected. Figure 2 shows the result of
the observation of the JCH dynamics for two ions (the
circles), where the population of the internal state of each
ion is plotted. The system is initially prepared in the
lg1)lg2)10),10), state with sideband cooling and optical
pumping. The excitation laser is tuned to the resonance
of the blue-sideband transition of the radial x mode. This
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FIG. 2 (color online). Measured and simulated quantum dy-
namics of the JCH system with two ions. Populations of the
excited state of one ion and the other are plotted in (a) and (b),
respectively, with circles. Each point obtained is the average of
50 experiments. Curves are numerically simulated results, which
are multiplied by 0.8 to consider population quenching from
Ds; to S}, in the relatively long detection time of 80 ms due to
a stray intensity from the 854-nm beam.

gives rise to an anti-Jaynes-Cummings coupling [2], which
is formally equivalent to a JC coupling when the internal
states {|g;), |e;)} are interchanged. The red curves show
numerically simulated dynamics for the hopping rate x/2
of 5.4 kHz, the JC coupling coefficient 2g /27 of 12.0 kHz,
and the coherence relaxation due to laser frequency fluc-
tuations of 200 Hz. Although the dynamics is periodical, it
is greatly modified from a simple sinusoidal oscillation due
to the effect of the intersite hopping term. The two ions
show almost the same dynamics as expected from equal
illumination.

As a demonstration of a quantum phase transition, an
adiabatic transfer from an insulator ground state to a su-
perfluid (SF) ground state is observed in the average
excited-state population of two ions [see Fig. 3(a)].

The transfer process starts from a point where —A/g is
large, where the ground state is approximately |i¢r,q) =
le;)|e)|0),]0), [the atomic insulator state (atl)]. Then A/g
increases, exceeds zero, and becomes a large positive
value, where the ground state is approximately |y ynsp)=

lg1)lg2)®[(1/5/2)D)111),=(1/2)12)110),— (1/2)10);12),]=
lg 1) g2)®(1/+/2)af%|0),10), [the phonon SF state (phSF)].
Here, a4} =(1/ \/5)(&? — &;r ) is the rocking-mode creation
operator. This phase is the phonon SF phase. In the inter-
mediate region around A ~ 0, the system is in the polari-
tonic SF state. This polaritonic SF state is approximated as

(1/ BN s+ (1/V0) )+ (1/24/2) (e 1) g2) 1)1 10), +

lg)lex)|0)1 1), —le ) g22|0)1 1), — [ g1)lex)|1)110),) [7].
In the experiment, | ;) is prepared with cooling, opti-
cal pumping, and applying a carrier 7= pulse. Then the
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FIG. 3 (color online). (a) Variation of the average internal-state
populations during the adiabatic transfer. Each point obtained is
the average of 50 experiments. The inset shows the time depen-
dence of the JC coupling coefficient 2g/27 (the solid curve with
the vertical axis on the left) and the detuning A /27 (the dashed
curve with the vertical axis on the right). (b) Time dependence of
the eigenenergies obtained by diagonalyzing the instantaneous
Hamiltonians based on the pulse parameters used in the experi-
ment. The lowest three curves corresponds, from the lowest to the
third lowest, to |¢,q) = |¥pmse)s (1/v2)(1g)ex) +1er)lga)) @
at10),10)y,—lglgx)®alat10),10),,  and  (1/v2)(Ig))les)—
|€1>|g2>)®&j|0>1 |0>2—>|g1>|g2>®(1/\/§)&32|0>1 05, respec-
tively. (c),(d) Measurement of the average phonon numbers of
collective modes before the adiabatic transfer. Results of spectros-
copy over radial red- and blue-sideband transitions before the
adiabatic transfer are shown in (c) and (d), respectively. Each point
obtained is the average of 50 experiments, and the red curves are
the results of fitting with multiple Gaussians. The label —w.
(+ ., ) indicates the red- (blue-) sideband resonance of the
center-of-mass (c.m.) mode, and — w o (+@.oe) the red- (blue-)
sideband resonance of the rocking mode. (e),(f) Measurement of
the average phonon numbers of collective modes after the adia-
batic transfer, in a similar way to (c) and (d). Results of spectros-
copy over radial red- and blue-sideband transitions after the
adiabatic transfer are shown in (e) and (f), respectively.

adiabatic transfer is realized by shining the excitation laser
and sweeping its detuning A over the red-sideband reso-
nance from negative to positive values. The amplitude of
the beam is also modulated in a Gaussian shape to ensure
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that |A|/g is large at the beginning and end of the pulse so
that the overlap of the initial (final) state and | )
{ ¥ ohsr)) is optimized. The explicit values of the parame-
ters are as follows. A/27 is linearly swept from —41 to
59 kHz in 960 ws, and the JC coupling coefficient 2g/2m
is varied from 0.29 X 14 to 14 kHz and back to 0.29 X
14 kHz in a Gaussian shape over the same period [see the
inset of Fig. 3(a)]. The red curve in Fig. 3(a) is a numeri-
cally simulated result.

The initial population in Fig. 3(a) is ~5% smaller than
what is expected for | i ;). This is the result of infidelity in
the carrier 77 pulse used to prepare | ), which is presum-
ably due to jitter in the excitation beam. The final population
is floating from zero by ~10%. In addition to the imperfect
initialization mentioned above, this is due also to infidelity
in the adiabatic transfer process itself, which we speculate is
due mainly to the effect of laser frequency fluctuations. We
previously analyzed the effects of laser frequency fluctua-
tions and adiabaticity in the rapid adiabatic passage on the
sideband transitions (see Fig. 4 of Ref. [25]; although this
analysis was done for a single ion, the overall qualitative
and quantitative behavior should be similar). We have con-
firmed in a numerical simulation that the population goes to
near zero with less than 1% error under the assumption of no
laser frequency fluctuation. Hence we speculate that the
effect of diabatic transitions is limited to below 1%.

We also analyzed the adiabaticity during the transfer
process using the theory of adiabatic variations of
Hamiltonians [26]. Figure 3(b) shows the time-dependent
eigenenergies obtained by diagonalizing the instantaneous
Hamiltonians based on the pulse parameters used in the
experiment. From these eigenenergies and eigenvectors,
the probability of diabatic transitions is estimated in a
similar way as in Ref. [25]. The largest leakage from the
ground state is the one towards the third lowest level, and
its probability is at most 2%. This is consistent with the
numerical result given above.

The effect of the adiabatic transfer process on the phonon
states is also examined. Figures 3(c)-3(f) show the result of
phonon-number measurements. Figures 3(c) and 3(d) show
the results of spectroscopy over the radial red- and blue-
sideband transitions, respectively, at the beginning of the
adiabatic transfer process, and Figs. 3(e) and 3(f) show the
corresponding results at the end of the process. From these
results, the average phonon numbers for the c.m. and rock-
ing modes at the beginning and end are estimated to be
(Fie.m.» irock) = (0.09 £0.04,0.04 £ 0.05) and (7. ., firoek) =
(0.15 = 0.11, 1.58 = 0.60), respectively. At the beginning,
both of the phonon modes are almost in the ground states,
while at the end, a number of rocking-mode phonon quanta
close to 2 is realized and the c.m. mode is almost intact.
The above results support the occurrence of a quantum
phase transition from the atomic insulator ground state
| ) = lei)|ex)0),]0), to the phonon SF ground state

[ pnse) = lg1)lg2) ® (1/4/2)af?10),10),.

The transfer process is further analyzed by estimating the
excitation number variances (atomic, phonon, and total)
introduced above. The red circles in Fig. 4(a) show the
atomic excitation number variance AN 3,1 estimated from
atomic populations measured with the photomultiplier tube.
The peak at the center indicates the presence of polaritons.
The numerically simulated results are also shown as the red
solid curve. The cause for the discrepancy between the
experimental and calculated values is expected to be similar
to that discussed in relation to Fig. 3(a). The blue triangles
in Fig. 4(a) show the values of the phonon-number vari-
ance AI\A/?,’l with N pi= &;.r a;, which are obtained by mea-
suring the average phonon numbers in the same way as in
Figs. 3(c)-3(f), and estimating the variance according to
Egs. (3) and (4) of the Supplemental Material [27]. This
supports the argument that the phonon SF ground state is
realized at the end of the adiabatic transfer.

Estimation of the total excitation number variance AN?
requires simultaneous measurements of internal and pho-
non states, which are relatively difficult to perform since
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FIG. 4 (color online). Estimated experimental and calculated
values for the excitation number variances (atomic, phonon, and
total) during the adiabatic transfer. The points are experimental
values and the curves are calculated from exact ground states
against the actual time dependence of the experimental parame-
ters. (a) Values for the atomic excitation number variance AN 3,1
(the circles and the solid curve) and the phonon-number variance
A]\Al?,,l (the triangles and the dashed curve). Each point obtained
is the average of 50 experiments. (b) Values for the total
excitation number variance AN?. Instead of directly estimating
the experimental values for this quantity, the upper and lower
bounds are estimated along with their errors, and shown as the
circles and triangles (see text for details).
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phonon states should be once mapped to internal states to
be read. We avoid such measurements here and instead
estimate AN7 from the known quantities ANZ | and AN%,I.

It should be noted that in this case AN? can only be
estimated as intervals with upper and lower bounds. The
details of the derivation of inequalities for estimating
the upper and lower bounds of A]\A/% are given in the
Supplemental Material [27].

Figure 4(b) is the total excitation number variance AN?.
The values (upper and lower bounds) are obtained using
Egs. (5) and (6) of the Supplemental Material[27] along
with the results in Fig. 4(a). The expected qualitative
behavior, including the onset of a phase transition (near
400 us), an example of which is seen in Fig. 2 of Ref. [5],
is reproduced in these results.

In summary, we have observed dynamics and adiabatic
transfer between ground states of a JCH system with two
ions. Scaling up the JCH system described in this Letter to
include larger numbers of sites necessitates certain points
to be overcome. When the number of ions in the linear
chain N, is increased, the spacing at the center d,
decreases in proportion to (Nj,,s)~%>>° [24] and hence «
increases in proportion to (Nj,,)"®””. On the other hand, it
is desired to keep «/g at moderate values so that the rich
phase diagram of the JCH system should be explored as
widely as possible. This demand may be fulfilled by tight-
ening the radial confinement (note that k * w; ') or by
using an array of independent traps, for which interion
distances and magnitudes of confinement can be chosen
independently.
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