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We demonstrate the experimental implementation of an optical lattice that allows for the generation of

large homogeneous and tunable artificial magnetic fields with ultracold atoms. Using laser-assisted

tunneling in a tilted optical potential, we engineer spatially dependent complex tunneling amplitudes.

Thereby, atoms hopping in the lattice accumulate a phase shift equivalent to the Aharonov-Bohm phase of

charged particles in a magnetic field. We determine the local distribution of fluxes through the observation

of cyclotron orbits of the atoms on lattice plaquettes, showing that the system is described by the

Hofstadter model. Furthermore, we show that for two atomic spin states with opposite magnetic moments,

our system naturally realizes the time-reversal-symmetric Hamiltonian underlying the quantum spin Hall

effect; i.e., two different spin components experience opposite directions of the magnetic field.
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Ultracold atoms in optical lattices constitute a unique
experimental setting to study condensed matter
Hamiltonians in a clean and well-controlled environment
[1], even in regimes not accessible to typical condensed
matter systems [2]. Especially intriguing is their promising
potential to realize and probe topological phases of matter,
for example, by utilizing the newly developed quantum
optical high-resolution detection and manipulation tech-
niques [3,4]. One compelling possibility in this direction is
the quantum simulation of electrons moving in a periodic
potential exposed to a large magnetic field, described by
the Hofstadter-Harper Hamiltonian [5,6]. For a filled band
of fermions, this model realizes the paradigmatic example
of a topological insulator that breaks time-reversal
symmetry—the quantum Hall insulator. Moreover, the
atomic realization of time-reversal-symmetric topological
insulators based on the quantum spin Hall effect [7] prom-
ises new insights for spintronic applications.

The direct quantum simulation of orbital magnetism in
ultracold quantumgases is, however, hindered by the charge
neutrality of atoms, which prevents them from experiencing
a Lorentz force. Overcoming this limitation through the
engineering of synthetic gauge potentials is currently a
major topic in cold-atom research. Artificialmagnetic fields
were first accomplished using the Coriolis force in a rotat-
ing atomic gas [8,9] and later by inducing Berry’s phases
through the application of Raman lasers [10,11]. Recently,
staggered magnetic fields in optical lattices were achieved
using laser-induced tunneling in superlattice potentials [12]
or through dynamical shaking [13]. In one dimension,
tunable gauge fields have been implemented in an effective
‘‘Zeeman lattice’’ [14] and using periodic driving [15].
Furthermore, the free-space spin Hall effect was observed
usingRaman dressing [16].Despite intense research efforts,

2D optical lattices featuring topological many-body phases
have so far been beyond the reach of experiments.
In this Letter, we demonstrate the first experimental

realization of an optical lattice that allows for the genera-
tion of large tunable homogeneous artificial magnetic
fields. The technique is based on our previous work on
staggered magnetic fields [12]. The main idea is closely
related to early proposals by Jaksch and Zoller [17] and
subsequent work [18,19]. However, it does not rely on the
internal structure of the atom, which makes it applicable to
a larger variety of atomic species, including fermionic
atoms like 6Li and 40K. We use laser-assisted tunneling
in a tilted optical lattice through periodic driving with a
pair of far-detuned running-wave beams [20,21]. In con-
trast to techniques based on near-resonant laser beams,
heating of the atomic cloud due to spontaneous emission
is negligible [22]. The position dependence of the on-site
modulation introduced by the running-wave beams leads to
a spatially dependent complex tunneling amplitude.
Therefore, an atom hopping around a closed loop acquires
a nontrivial phase, which mimics an Aharonov-Bohm
phase. In our setup, we realize a uniform effective flux of
� ¼ �=2 per plaquette, whose value is fully tunable. We
study resonant laser-assisted tunneling in the tilted optical
potential and reveal the local distribution of fluxes by
partitioning the lattice into isolated four-site square pla-
quettes. Furthermore, we show that for two spin states with
opposite magnetic moments j"i and j#i, our coupling
scheme directly gives rise to a non-Abelian SU(2) gauge
field that results in opposite magnetic fields for j"i and j#i
particles. In the presence of such a gauge field, the tight-
binding Hamiltonian is time-reversal symmetric and cor-
responds precisely to the one underlying the quantum spin
Hall effect [7,23].
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Our experimental setup consists of an ultracold gas of
87Rb atoms held in a three-dimensional optical lattice
created by three mutually orthogonal standing waves of
laser light at wavelengths �x ¼ �y ¼ 767 nm and �z ¼
844 nm. The depth of the lattice along z is chosen deep
enough to suppress tunneling between individual planes,
typically Vz ¼ 30ð1ÞErz, where Eri ¼ h2=ð2m�2

i Þ, i 2
fx; y; zg, are the corresponding recoil energies and m is
the mass of an atom. A magnetic field gradient B0 along
x is used to generate a linear potential of amplitude ��
between neighboring sites, depending on the internal
state of the atom (Fig. 1). We use two Zeeman states
with opposite magnetic moments denoted as spin-up j"i �
jF ¼ 1; mF ¼ �1i and spin-down j #i� jF¼2;mF¼�1i.
For � � Jx, with Jx being the bare coupling along x,
tunneling is inhibited and can be restored resonantly
using a pair of far-detuned running-wave beams with a
frequency difference ! ¼ �=@ (Fig. 1). The local
optical potential created by these two beams is VKðrÞ ¼
V0
Kcos

2ðq � r=2þ!t=2Þ, with q ¼ k1 � k2 being the
wave vector difference. This gives rise to a time-dependent
on-site modulation term with spatially dependent phases
�m;n ¼ q �R, where R ¼ mdx þ ndy denotes the lattice

site (m, n). In the high-frequency limit @! � Ji, i 2 fx; yg,
the system can be described by an effective time-
independent Hamiltonian

Ĥ ";# ¼ �X

m;n

ðKe�i�m;n âymþ1;nâm;n þ Jâym;nþ1âm;nÞ þ H:c:;

(1)

where the sign of the phase factor is positive for
j"i atoms and negative for j#i atoms. In the limit
of � � V0

K, the effective coupling strengths along x and

y are K ¼ JxJ 1ðV0
K=ð

ffiffiffi
2

p
�ÞÞ ’ JxV

0
K=ð2

ffiffiffi
2

p
�Þ and J ¼

JyJ 0ðV0
K=ð

ffiffiffi
2

p
�ÞÞ ’ Jy, where J �ðxÞ are the Bessel func-

tions of the first kind [24]. We note that the spin-dependent
Peierls phase factors directly arise from the spin-dependent
Zeeman coupling to the real applied magnetic field
gradient.
For the chosen propagation of the running-wave beams

shown in Fig. 1 and �K ¼ 2�y, we obtain a phase factor

�m;n ¼ �=2ðmþ nÞ [22]. Therefore, the phase accumu-

lated on a closed path around a plaquette is �� ¼ ��=2,
depending on the spin of the particle, and the correspond-
ing gauge field is given by A ¼ �ð@�ðxþ yÞ=
ðdxdyÞ; 0; 0Þ�̂z, where �̂z is the Pauli z matrix. A different

value of the flux � could be achieved by changing the
wavelength �K or the angle between the running-wave
beams.
To study laser-assisted tunneling in the presence of the

magnetic field gradient B0, we loaded a Bose-Einstein
condensate of about 5� 104 atoms in an initial state,
where all atoms populated even sites with at most one
atom per site, while odd sites were left empty {Fig. 2(a)
and Ref. [22]}. The final lattice depths Vx ¼ 5:0ð1ÞErx and
Vy ¼ 40ð1ÞEry were chosen to yield a negligible tunneling

along y and a bare tunnel coupling along x of Jx=h ¼
0:26ð1Þ kHz. Because of the magnetic field gradient,
tunneling was inhibited along x and all atoms stayed
in even sites. The running-wave beams were then switched

(a) (b)

FIG. 1 (color). Experimental setup. The experiment consists of
a 3D optical lattice, where the vertical lattice isolates different
planes. The lattice constants within each plane are jdij ¼ �i=2,
with i ¼ x, y. Along y, bare tunneling occurs with strength J,
while tunneling along x is inhibited by a magnetic field gradient
B0, which introduces an energy offset between neighboring sites
of (a) � for j"i atoms and (b) �� for j#i atoms. An additional
pair of laser beams (red arrows) with wave vectors jk1j ’ jk2j ¼
2�=�K and frequency difference ! ¼ !1 �!2 ¼ �=@ is used
to restore resonant tunneling with complex amplitude K. This
realizes an effective flux of (a) � ¼ �=2 for j"i atoms and (b)
�� for j#i atoms.
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FIG. 2 (color). Laser-assisted tunneling in a tilted optical
lattice. (a) Schematic of the initial state used to study laser-
assisted tunneling in the presence of a magnetic field gradient B0.
Atoms are initially prepared in even sites with at most one atom
per lattice site, while odd sites are left empty. (b) Measured
frequency difference !res ¼ !1 �!2, where atoms resonantly
tunnel from even to odd sites, as a function of the magnetic field
gradient B0. The finite value at B0 ¼ 0 is due to a small additional
magnetic field gradient [22]. The solid line is a linear fit to our
data. The inset shows a typical spectroscopy measurement for
B0 ¼ 17:5 mG=�m, where the fraction of atoms on odd sites
nodd is measured as a function of the frequency difference ! to
determine the resonance frequency!res. The solid line shows the
fit of a Lorentzian function to our data.
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on for 4 ms with strength V0
K ¼ 9:9ð2ÞErK, where ErK ¼

h2=ð2m�2
KÞ. Afterwards, we measured the fraction of

atoms transferred to odd sites nodd as a function of the
frequency difference ! for a fixed value of the magnetic
field gradient. Even-odd resolved detection was achieved
by transferring atoms in odd sites to a higher Bloch band
and applying a subsequent band-mapping sequence
[22,25]. As shown in the inset of Fig. 2(b), atoms are
transferred resonantly to odd sites when the frequency of
the running-wave beams matches the energy offset �
between neighboring sites. We measured the resonance
frequency !res for various values of the magnetic field
gradient and observed a large tunability up to about
�=h� 10 kHz [Fig. 2(b)].

The spatial distribution of the local fluxes induced by the
running-wave beams was revealed by a series of measure-
ments in isolated four-site square plaquettes using optical
superlattices. This was achieved by superimposing two
additional standing waves along x and y with wavelength
�li ¼ 2�i, i 2 fx; yg. The resulting potential along x is
VðxÞ ¼ Vlxsin

2ðkxx=2þ ’x=2Þ þ Vxsin
2ðkxxÞ, where Vlx

is the depth of the ‘‘long’’ lattice. The superlattice potential
along y is given by an analogous expression. The depths of
the lattices and the relative phases ’x and ’y can be

controlled independently. For ’x ¼ ’y ¼ 0, we realize

symmetric double well potentials along x and y to isolate
individual plaquettes (Fig. 3). Because of the presence of
the magnetic field gradient, the plaquettes are tilted along
x, with an energy offset � for j"i atoms and �� for j#i
atoms. The four sites of the plaquette are denoted as A, B,
C, and D (Fig. 3). The experiment started by loading
spin-polarized single atoms into the ground state of

the tilted plaquettes: j�0
" i ¼ ðjAi þ jDiÞ= ffiffiffi

2
p

and j�0
# i ¼

ðjBi þ jCiÞ= ffiffiffi
2

p
, for j"i and j#i, respectively {Fig. 3(a) and

Ref. [22]}. After switching on the running-wave beams,
the atoms couple to the B and C sites (j"i atoms) and A and
D sites (j#i atoms). Without the artificial magnetic field,
the atoms would oscillate periodically between left and
right, but due to the phase imprinted by the running-wave
beams, the atoms experience a force perpendicular to their
velocity similar to the Lorentz force acting on a charged
particle in a magnetic field. We measured the time
evolution of the atom population on different bonds
(Nleft ¼ NA þ ND, Nright ¼ NB þ NC, Nup ¼ NC þ ND,

and Ndown ¼ NA þ NB), with Nq being the atom popula-

tion per site (q ¼ A, B, C, D), by applying the even-odd
resolved detection along both directions independently
[22]. From this, we obtained the mean atom positions
along x and y, hXi ¼ ðNright � NleftÞdx=2N and hYi ¼
ðNup � NdownÞdy=2N, with N being the total atom number.

As shown in Fig. 3(a), the mean atom position follows a
small-scale quantum analog of the classical cyclotron orbit
for charged particles. Starting with equally populated sites
A and D, spin-up atoms experience a force along y, which
is perpendicular to the initial velocity and points towards

the lower bond in the plaquette (A and B sites). Spin-down
atoms, initially with opposite velocity, also move towards
the lower bond. Therefore, the chirality of the cyclotron
orbit is reversed, revealing the spin-dependent nature of the
artificial magnetic field [Fig. 3(a)]. The value of the mag-
netic flux per plaquette � ¼ 0:73ð5Þ � �=2, measured in
our previous work [12], is used for the fits in Fig. 3. The
difference from � ¼ �=2, expected for a homogeneous
lattice, stems from the smaller distance between lattice
sites inside the plaquettes when separated.
To further demonstrate the uniformity of the magnetic

field, we performed the same set of measurements in
plaquettes shifted by one lattice constant along x. This
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B A
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B
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FIG. 3 (color). Quantum cyclotron orbits obtained from the
mean atom positions along x and y, hXi=dx and hYi=dy, for
J=K � 2 [22]. Every data point is an average over three indi-
vidual measurements. The solid gray lines show the fit of the
theoretically expected evolution to the data, which was obtained
from a numerical calculation solving the time-dependent
Schrödinger equation of the 4� 4 Hamiltonian. The oscillation
amplitudes and offsets were fitted independently along x and y,
whereas the time offset �¼0:12ð5Þms and flux �¼0:73ð5Þ�
�=2 were fixed (see the main text and the Supplemental Material
[22]). The schematics illustrate the superlattice potentials used to
partition the lattice into plaquettes together with the initial state
for j"i atoms (green) and j#i atoms (blue) and the direction of the
flux. The superlattice potential along x is shifted by one lattice
constant for the experimental results in (b) with respect to the
ones in (a) to demonstrate the uniformity of the artificial mag-
netic field.
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was achieved by changing the relative phase between the
two standing waves along x from ’x ¼ 0 [Fig. 3(a)] to
’x ¼ � [Fig. 3(b)]. The chirality of the obtained cyclotron
orbits remained unchanged, which implies that a homoge-
nous magnetic flux is present in the system.

In analogy to the spin Hall effect observed in solid-state
devices [26], we measured the particle current perpendicu-
lar to the initial motion as a function of spin imbalance
n" � n#, where n" (n#) is the fraction of spin-up (down)

atoms. The experimental sequence started from a Mott
insulator of unit filling, with each atom prepared in a
superposition of j"i and j#i. We then loaded single atoms
into the ground state of the lower bond of the plaquettes,
which has an equal weight on A and B sites [Fig. 4(a)], and

measured the mean atom position hXi=dx. We obtained an
oscillation amplitude for a spin-polarized state of AhXi ¼
�0:28ð2Þ for j#i atoms and AhXi ¼ 0:26ð4Þ for j"i atoms. As

can be seen in Fig. 4(b), the evolution is almost perfectly
mirrored for the two spin components. The measured
oscillation amplitude as a function of the spin imbalance
n" � n# shows that the current depends linearly on the

spin imbalance and reverses sign when flipping the spin
[Fig. 4(c)].
In conclusion, we have demonstrated a new type of

optical lattice that realizes the non-time-reversal-
symmetric Hofstadter-Harper Hamiltonian and the time-
reversal-symmetric quantum spin Hall Hamiltonian for
ultracold atoms in optical lattices. Loading spin-polarized
or two-component Fermi gases into this lattice should
allow one to directly realize quantum Hall and Z2 topo-
logical insulators with chiral and helical edge states for
finite sized systems. This system also opens the path to
explore the fractal band structure of the Hofstadter butter-
fly with ultracold atoms [6]. The lowest band is topologi-
cally equivalent to the lowest Landau level and exhibits a
Chern number of one [11,17,19,27]. In future experiments,
the ground-state properties, the effect of the Berry curva-
ture, and topological edge states could be studied [28–30].
The chiral edge modes in this lattice could be directly
revealed in ladder systems exposed to a homogeneous
magnetic field, which constitute the smallest possible 2D
systems in which these states can be observed [31].
Moreover, our work constitutes an important step towards
the study of the quantum Hall effect with ultracold
atomic gases and the creation of strongly interacting
fractional quantum-Hall-like liquids for bosonic and fer-
mionic atoms [32].
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Note added.—Recently, we became aware of similar

work carried out by Ketterle and co-workers [33].
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