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We experimentally implement the Harper Hamiltonian for neutral particles in optical lattices using

laser-assisted tunneling and a potential energy gradient provided by gravity or magnetic field gradients.

This Hamiltonian describes the motion of charged particles in strong magnetic fields. Laser-assisted

tunneling processes are characterized by studying the expansion of the atoms in the lattice. The band

structure of this Hamiltonian should display Hofstadter’s butterfly. For fermions, this scheme should

realize the quantum Hall effect and chiral edge states.
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Systems of charged particles in magnetic fields have led
to many discoveries in science—including both the integer
[1] and the fractional [2,3] quantum Hall effects—and have
become important paradigms of quantummany-body phys-
ics [4]. Generalizations have led to important developments
in condensed matter physics, including topological insula-
tors [5,6], fractional Chern insulators [7,8], and Majorana
fermions [9,10]. At high magnetic fields, exotic new phe-
nomena like the fractal energy spectrum of Hofstadter’s
butterfly [11] are predicted to emerge. Its direct observation
would require an inaccessibly high magnetic field of one
flux quantum per unit cell—corresponding to�10000 T in
a traditional condensed matter system. Recently, some
aspects of Hofstadter’s butterfly were addressed using
superlattices in high magnetic fields [12–15].

Neutral atoms provide an excellent platform to simulate
the physics of charged particles in magnetic fields free
from disorder. Rotating quantum gases realize the limit
of weak magnetic fields, exploiting the equivalence
between the Lorentz force and the Coriolis force. The
observed vortex lattices [16,17] are analogous to magnetic
flux lattices. A more general method to create synthetic
magnetic fields for neutral atoms is based on the insight
that vector potentials introduce spatially varying phases �
into the wave function when the particle propagates � ¼H
A � ds=@, where the charge is included in the vector

potential. For neutral atoms, such a phase structure can
be realized through Berry phases, when two hyperfine
states of the atom are coupled by Raman lasers with
inhomogeneous intensity or detuning [18,19]. This concept
of coupling of two or several internal states to realize
synthetic magnetic fields was also suggested in optical
lattice geometries [20–22]. Here, the crucial element is
laser-assisted hopping between neighboring sites which
imprints the phase of the laser into the atomic wave func-
tion. Alternatively, instead of using Raman laser beams,
lattice modulation techniques can generate complex tun-
neling matrix elements in optical lattices [23,24].
Experimentally, these techniques have been used so far

only to realize staggered magnetic fields [24,25]. In the
Munich experiment, the two internal states in the proposed
schemes [20,22] were replaced by doubling the unit cell of
the optical lattice using superlattices [25].
So far, all proposals for generating high magnetic fields

are based on the coupling of different internal states. For
alkali atoms, this involves different hyperfine states [20].
Spin flips between such states require near-resonant light
which heats up the sample by spontaneous emission. At
least for staggered fluxes, the realizations with lattice
shaking and superlattices demonstrate that internal struc-
ture of the atom is not essential. Here, we suggest and
implement a scheme which realizes the Harper
Hamiltonian [26], a lattice model for charged particles in
magnetic fields, the spectrum of which is the famous
Hofstadter’s butterfly [11]. Our scheme requires only far-
off-resonant lasers and a single internal state. It is an
extension of a scheme suggested by Kolovsky [27], which
was shown to be limited to inhomogeneous fields [28], but
as we show here, an additional momentum transfer in the
laser-assisted hopping process provides a simple solution.
While this work was in progress [29], an identical scheme
was proposed by the Munich group [30]. In this Letter, we
describe the features and implementation of this scheme,
and characterize the laser-assisted hopping process.
We start with the simple Hamiltonian for noninteracting

particles in a 2D cubic lattice

H ¼ �X
m;n

ðJxâymþ1;nâm;n þ Jyâ
y
m;nþ1âm;n þ H:c:Þ; (1)

where JxðyÞ describes tunneling in the x (y) direction and

âym;n (âm;n) is the creation (annihilation) operator of a

particle at lattice site (m, n). Tunneling in the x direction
is then suppressed by a linear tilt of energy � per lattice
site, where�=h is the Bloch oscillation frequency. This tilt
can be created with magnetic field gradients, gravity, or an
ac Stark shift gradient. Resonant tunneling is restored with
two far-detuned Raman beams of two-photon Rabi fre-
quency �, frequency detuning �! ¼ !1 �!2, and mo-
mentum transfer �k ¼ k1 � k2, as shown in Fig. 1(a).

PRL 111, 185302 (2013)

Selected for a Viewpoint in Physics
PHY S I CA L R EV I EW LE T T E R S

week ending
1 NOVEMBER 2013

0031-9007=13=111(18)=185302(5) 185302-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.185302
http://link.aps.org/viewpoint-for/10.1103/PhysRevLett.111.185302


Note that the two Raman beams couple different sites but
do not change the internal state of the atoms. For resonant
tunneling �! ¼ �=@, time averaging over rapidly oscillat-
ing terms [20] yields an effective Hamiltonian which is
time independent. As a result, the tilt has disappeared
because, in the dressed atom picture, site (m, n) with j
and k photons in the two Raman beams is degenerate with
site (mþ 1, n) and jþ 1 and k� 1 photons in the two
beams. This effective Hamiltonian describes the system
well, assuming that � is larger than the bandwidth�J and
smaller than the band gap Egap. In addition, the effects of

power broadening can be avoided if we choose� less than
�. The resulting Hamiltonian is equivalent to one that
describes charged particles on a lattice in a magnetic field
under the tight-binding approximation [11,26]—the
single-band Harper Hamiltonian

H¼�X
m;n

ðKe�i�m;n âymþ1;nâm;nþJâym;nþ1âm;nþH:c:Þ (2)

with a spatially varying phase �m;n ¼ �k �Rm;n ¼
m�x þ n�y where Rm;n denotes the position of each

lattice site. Solutions in this model are periodic with
respect to the number of flux quanta per unit cell �. If
the frequencies of the Raman beams are similar to those
used for the optical lattice, one can tune � over the full
range between zero and one by adjusting the angle between
the Raman beams, and consequently ky. A similar

Hamiltonian can be realized for the tunneling of phonons
between ion microtraps [31].

The spatially dependent phase imprinted by the Raman
lasers, given by �m;n, can be intuitively understood in a

perturbative regime, where Jpert ¼ Jy and

Kpert ¼ �

2

Z
d2rw�ðr�Rm;nÞe�i�k�rwðr�Rm;n � ax̂Þ

¼ Ke�i�k�Rm;n : (3)

Adding up the accumulated phases around a closed path,
one sees that this method leads to an enclosed phase of
�y ¼ �kya per lattice unit cell of area a

2, thus realizing the

Harper Hamiltonian with � ¼ �y=2�.

In a cubic lattice, the Wannier function wðrÞ factorizes
into wðxÞwðyÞ which are the localized Wannier-Stark
and Wannier wave functions, respectively. The resulting
expression for K ¼ ð�=2ÞR dxw�ðxÞe�ikxxwðx� aÞ �R
dyw�ðyÞe�ikyywðyÞ shows that the momentum transfer

in the x direction is necessary to have a nonvanishing
tunneling matrix element K without changing the internal
state. The x momentum transfer distinguishes our scheme
from Refs. [20,22,27] and contributes to the vector poten-
tial A ¼ ½@ðkyyþ kxxÞ=a�x̂ but does not contribute to the

enclosed flux or the value of the synthetic magnetic fieldB.
Note that this scheme does not realize the simple Landau
gauge for the magnetic field.
For a more comprehensive description, we add the

moving lattice—VRM ¼ �sinð�k � r�!tÞ—of the two
Raman lasers along with a linear tilt to the Hamiltonian
in Eq. (1). In addition to the off-diagonal laser-assisted
tunneling term, this moving lattice causes a diagonal term,
which is a temporal modulation of the on-site energies. A
unitary transformation, as in Refs. [29,32], leads to a frame
rotating nonuniformly in time and position that eliminates
the diagonal time dependence. For resonant drive � ¼
@�!, the on-site energies are all equal and vanish while
the remaining off-diagonal coupling has a time-
independent part, leading to the Harper Hamiltonian, as
in Eq. (2). The resulting expressions for K and J are (see
the Supplemental Material [33])

K ¼ ��y0

�
�x1

J1ð�xÞ
�x

þ i�0
x1

dJ1ð�xÞ
d�x

�
;

J ¼ JyJ0ð�yÞ; �i ¼
2��y0�x0

�
sin

�
kia

2

�
;

(4)

where �i0 ¼ h0j cosðkixiÞj0i is the on-site matrix
element, and �x1 ¼ h0j sin½kxðx� a=2Þ�j1i and �0

x1 ¼h0j cos½kxðx� a=2Þ�j1i are the off-diagonal matrix ele-
ments. This result is more general than the case of phase
modulation [32] and the tight-binding limit in
Refs. [30,34], where K is proportional to J1ðxÞ.
We implement the Harper Hamiltonian with each Raman

laser aligned along one of the two lattice directions x and y
corresponding to momentum transfer in both directions of
@kL—the single-photon recoil of the lattice laser. The mag-
netic flux per unit cell resulting from ky ¼ kL is� ¼ 1=2. In

the tight-binding limit for this momentum transfer,�i0 � 1

(b)

(a)

(c)

FIG. 1 (color online). (a) Raman-assisted tunneling in the
lowest band of a tilted lattice with an energy offset � between
neighboring sites and two-photon Rabi frequency �.
(b) Experimental geometry to generate uniform magnetic fields
using a pair of far-detuned laser beams and a uniform potential
energy gradient. Tunneling along the x direction with amplitude
K imprints a complex, spatially varying phase �m;n—with site

indices (m, n)—into the system due to the momentum transfer in
the y direction. (c) A schematic depicting the position-dependent
phases of the tunneling process. The equivalent number of flux
quanta per unit cell is � ¼ �y=2�.
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and �x1 � �2Jx=� � �0
x1, so the resonant tunneling

amplitudes resulting from kx ¼ kL simplify to

K ¼ JxJ1

�
2�

�

�
and J ¼ JyJ0

�
2�

�

�
: (5)

Experimentally, the system is prepared by starting with a
Bose-Einstein condensate of �5� 105 87Rb atoms in the
j2;�2i state in a crossed dipole trap. The Raman lasers are
ramped up to their final intensities in 30 ms at a large
detuning of 200 kHz and are switched to their final detun-
ing after the tilt is applied to the system (see below).
Unwanted interferences between lattice and Raman lasers
are avoided with relative frequency offsets of >30 MHz
using acousto-optic modulators. Next, we adiabatically
load the condensate in 100 ms into a two-dimensional
cubic optical lattice of spacing �latt=2 ¼ 532 nm. For lon-
ger hold times, a weak 2Er lattice beam along the third
direction is simultaneously ramped up to provide addi-
tional confinement. Here, Er ¼ @

2k2L=2m � h� 2 kHz is
the single-photon recoil energy. The two-photon Rabi fre-
quency of the moving Raman lattice is determined using
free-space Rabi oscillations and chosen to be considerably
smaller than the static lattice.

After loading the condensate into the lattice, a uniform
potential energy gradient of mga=h � 1:1 kHz between
adjacent lattice sites is applied by turning off the confining
crossed dipole traps in 20 ms. Alternatively, we have
successfully used a magnetic field gradient to access a
broader range of tilts. The gravitational gradient has the
advantage of a much faster switching time compared to the
magnetic gradient. The cloud widths �x and �y are

obtained by standard absorption imaging along the direc-
tion perpendicular to the 2D lattice.

The essential feature of our implementation of the
Harper Hamiltonian is that tunneling in the x direction is
suppressed by a potential tilt and reestablished by laser-
assisted tunneling. This is demonstrated in Fig. 2, which
shows the resonance for the laser-assisted process. For this,

tunneling is characterized by looking at the expansion of
the cloud within the lattice. Expansion occurs since the
confinement by the optical dipole trap has been switched
off, and due to some heating during the 500 ms hold time.
Note that for fully coherent time evolution, charged parti-
cles in a magnetic field will undergo cyclotron motion
which would suppress the expansion. The resonance width
of 60 Hz may have contributions from laser frequency
jitter, inhomogeneous lattice potential, and atomic inter-
actions. The Lorentzian fit suggests a homogenous broad-
ening mechanism.
The dependence of K and J on the intensity of the

Raman lasers (described by Bessel functions) allows tun-
ing of the ratio of the two. For low intensities, K increases
linearly with the intensity, and J decreases quadratically.
The latter reflects the depletion of the unperturbedWannier
function by the modulation due to the moving Raman
lattice. Figure 3(a) shows experimental results in qualita-
tive agreement with these predictions.
For a quantitative interpretation of the expansion of the

cloud, we assume an incoherent diffusion process, where
the square of the width � of the expanded cloud is propor-
tional to the tunneling rate times expansion time. For short
times, the expansion of the cloud should be fully coherent,
and the width should increase linearly with time. However,
heating by light scattering and intensity fluctuations of the
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FIG. 2 (color online). In situ cloud width as a function of
Raman detuning �! after an expansion of 500 ms, with a
Raman lattice depth of � ¼ �=4. The solid line is a
Lorentzian fit to the experimental data (dots) centered at
1133 Hz—consistent with the gravitational offset between sites.
Pictures (of size 135� 116 �m) show typical column densities
on or off resonance. Inset: Dependence of the laser-assisted
tunneling on optical lattice depth.
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FIG. 3 (color online). (a) Expansion as a function of resonant
Raman laser intensity shows the laser-assisted tunneling along
the tilt direction (blue circles) and the tunneling rate J along the
transverse direction (red squares). Data taken at lattice depths of
9Er and hold time of 1500 ms. Inset: Theoretical prediction for
the tunneling rates K and J in terms of Bessel functions [Eq. (5)].
(b) Time evolution of the squared width for different Raman
laser intensities. From the slope of the lines, we obtain the laser-
assisted tunneling rates and their statistical errors: 0:2	 0:08
(red squares), 4	 0:5 (blue circles), 12	 1 (black diamonds),
and 8	 0:5 Hz (blue triangles).
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laser beams lead to an incoherent, diffusive expansion. For
finite time, we correct for the initial size �0 by assuming
that the expansion and initial size add in quadrature, and
plot the corrected squared width �2

corr ¼ �2 � �2
0 versus

time. The slope is proportional to the laser-assisted tunnel-
ing rate. Absolute tunneling rates are obtained by compar-
ing this result to the expansion of the cloud in the y
direction with the Raman beams far off resonance, when
normal tunneling occurs. The ratio of the slopes is then
K=Jy, with Jy calculated from the calibrated lattice depth

to be�h� 48 Hz. Figure 3(b) shows the time evolution of
the square of the corrected size for various Raman inten-
sities. The linear fits support the assumption of incoherent
diffusion and allow a determination of tunneling rates, as
summarized in the figure caption.

Laser-assisted tunneling is a powerful tool to manipulate
the motion of atoms in optical lattices and to create novel
Hamiltonians. We now describe different tunneling pro-
cesses observed by a wide scan of the Raman detuning,
shown in Fig. 4. A strong peak near 568 Hz fulfills the
resonance condition 2�! ¼ �=@ for a four-photon
nearest-neighbor tunneling process. This resonance is simi-
lar to the one observed in Ref. [35] by shaking the lattice.
Note that the four-photon resonance is narrower (20 Hz
versus 60 Hz) than the two-photon resonance, indicative
of a higher-order process. Broad features at even lower
frequency are most likely due to higher-order tunneling
resonances and low-lying excitations within the first band.

Next-nearest-neighbor tunneling occurs at �! ¼ 2�=@,
twice the frequency of the fundamental resonance. For a
shaken lattice (no Raman beams), this was studied in
Ref. [36]. Analyzing the expansion of the cloud gives a
tunneling rate of 0:4	 0:1 Hz, comparable to the next-
nearest-neighbor tunneling rate in an untilted lattice,
�0:8 Hz in our system. However, in an untilted lattice,
next-nearest-neighbor tunneling is typically a hundred
times slower than nearest-neighbor tunneling, whereas in
laser-assisted tunneling, the two processes can be indepen-
dently controlled by the laser power at the two resonant
frequencies. Tunneling rates below 1 Hz are too slow for
pursuing many-body physics, but the same scheme can be
implemented for lighter atoms such as lithium in a shorter
wavelength lattice, where the relevant scale factor, the
recoil energy, is increased by a factor of 50.
After realizing and characterizing all parts of the Harper

Hamiltonian, the next goal is to map out its band structure
as a function of quasimomentum and magnetic field �—
the Hofstadter butterfly. The ground state for a given �
should be accessible by adiabatically transferring a con-
densate into this Hamiltonian. The ground state of the
Harper Hamiltonian for � ¼ 1=2 has a clear signature in
that its magnetic unit cell is twice as large as the lattice unit
cell and its wave function has a unit cell that is 4 times as
large, so time of flight imaging will reveal the resulting
reduction of the Brillouin zone in momentum space by a
factor of 4 [25,29,37–39]. So far, we have not been able to
preserve the low entropy of the initial condensate and
observe the ground state.
Preliminary experiments have shown less heating by the

Raman beams at larger frequency detuning, requiring
larger magnetic field gradients. An optimum detuning
should be near half the band gap, avoiding inter- and
intraband transitions. Possibly, an extension of the treat-
ment of light scattering in optical lattices [40] could predict
if there is a fundamental lower limit to the ratio of heating
rate over K. Another potential source of heating is atomic
interactions. Instabilities of certain quasimomentum states
in optical lattices have been studied in Refs. [41,42].
Interaction-induced heating effects can in principle be
avoided by using Feshbach resonances to tune the scatter-
ing length to zero or by using a single spin component of a
fermionic gas. Once the ground state of the Harper
Hamiltonian is established, different quasimomentum
states can be populated through Bloch oscillations which
occur at frequency � ¼ �!��=@, when the Raman
lasers are slightly detuned from the resonance studied here.
The Harper Hamiltonian established in this work will be

the starting point for many exciting explorations, including
the quantum Hall effect, Dirac points, and novel topologi-
cal phenomena [8,43]. Interactions between atoms may
also lead to bosonic Laughlin states [44] and nonlinear
Hofstadter eigenmodes [45]. The lowest band is topologi-
cally nontrivial with a Chern number of 1 [46] and should
show chiral edge states. Most importantly, our scheme is
simpler and potentially more robust than other suggestions,
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FIG. 4 (color online). Spectrum of excitations and tunneling
resonances. (a) A strong, four-photon, nearest-neighbor tunnel-
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since it does not require near-resonant light for connecting
hyperfine states. It can be implemented for any atom—
including the workhorse fermionic atoms lithium and
potassium—which has small fine structure splittings, mak-
ing it impossible to couple different spin states with neg-
ligible heating by spontaneous emission.
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critical reading of the manuscript. This work was sup-
ported by the NSF through the Center of Ultracold
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Note added.—Recently, we became aware of similar
work carried out by Bloch and co-workers [34].
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[8] G. Möller and N. R. Cooper, Phys. Rev. Lett. 103, 105303
(2009).

[9] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[10] V. Mourik, K. Zuo, S.M. Frolov, S. R. Plissard, E. P. A.M.

Bakkers, and L. P. Kouwenhoven, Science 336, 1003
(2012).

[11] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[12] B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M.

Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P.
Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori,
Science 340, 1427 (2013).

[13] L. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias,
R. Jalil, A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R.
Woods, J. R. Wallbank, M. Mucha-Kruczynski, B. A. Piot,
M. Potemski, I. Grigorieva, K. S. Novoselov, F. Guinea,
V. I. Falko, and A.K. Geim, Nature (London) 497, 594
(2013).

[14] C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y.
Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T.
Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P.
Kim, Nature (London) 497, 598 (2013).

[15] C. Albrecht, J.H. Smet, K. von Klitzing, D. Weiss, V.
Umansky, andH.Schweizer, Phys. Rev. Lett. 86, 147 (2001).

[16] K.W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard,
Phys. Rev. Lett. 84, 806 (2000).

[17] J. R. Abo-Shaeer, C. Raman, J.M. Vogels, and W.
Ketterle, Science 292, 476 (2001).

[18] Y.-J. Lin, R. L. Compton, K. Jimenez-Garcia, J. V. Porto,
and I. Spielman, Nature (London) 462, 628 (2009).

[19] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Rev.
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