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In many complex systems, large events are believed to follow power-law, scale-free probability

distributions so that the extreme, catastrophic events are unpredictable. Here, we study coupled chaotic

oscillators that display extreme events. The mechanism responsible for the rare, largest events makes them

distinct, and their distribution deviates from a power law. On the basis of this mechanism identification,

we show that it is possible to forecast in real time an impending extreme event. Once forecasted, we also

show that extreme events can be suppressed by applying tiny perturbations to the system.
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Extreme events are increasingly attracting the attention
of scientists and decision makers because of their impact
on society [1–4], which is exacerbated by our increasing
global interconnectivity. Examples of extreme events
include financial crises, environmental and industrial acci-
dents, epidemics, and blackouts [5]. From a scientific
viewpoint, extreme events are interesting because they
often reveal underlying, often hidden, organizing prin-
ciples [6–8]. In turn, these organizing principles may
enable the forecasting and control of extreme events.

Some progress along these lines has emerged in studies
of complex systems composed of many interacting entities.
For example, it was found recently that complex systems
with two or more stable states may undergo a bifurcation
causing a transition between these states that is associated
with an extreme event [9,10]. Critical slowing down and/or
increased variability of measurable system quantities near
the bifurcation point open up the possibility of forecasting
an impending event, as observed in laboratory-replicated
populations of budding yeast [11].

An open question is whether other underlying behaviors
cause extreme events. One possible scenario is when the
system varies in time and is organized by attracting sets in
phase space. For example, a recent model of financial
systems consisting of coupled, stochastically driven linear
mappings [12] shows so-called bubbling behavior, where a
bubble—an extreme event—corresponds to a large tempo-
rary excursion of the system state away from a nominal
value. In this example, the event-size distribution follows a
power law, having a ‘‘fat’’ tail that describes the significant
likelihood of extreme events. One main characteristic of

such distributions is that they are scale free, which means
that events of arbitrarily large sizes are caused by the same
dynamical mechanisms governing the occurrence of small-
and intermediate-size events, leading to an impossibility of
forecasting [13–17].
In contrast, the new concept of ‘‘dragon kings’’ (DKs)

emphasizes that the most extreme events often do not
belong to a scale-free distribution [13]. DKs are outliers,
which possess distinct formation mechanisms [18]. Such
specific underlying mechanisms open the possibility that
DKs can be forecasted, allowing for suppression and con-
trol. Here, we show DK-type statistics occurring in an
electronic circuit that has an underlying time-varying dy-
namics identified to belong to a more general class of
complex systems. Moreover, we identify the mechanism
leading to the DKs and show that they can be forecasted in
real time and even suppressed by the application of tiny
and occasional perturbations. The mechanism responsible
for DKs in this specific system is attractor bubbling. As
explained below, we argue that attractor bubbling is a
generic behavior appearing in networks of coupled oscil-
lators and that DKs and extreme events are likely in these
extended systems.
The large class of spatially extended coupled oscillator

networks covers the physics of earthquakes [19], biological
systems such as the collective phase synchronization in
brain activity [20], and even of financial systems made of
interacting investors with threshold decisions and herding
tendencies [21]. Many coupled-oscillator system models
exhibiting chaos have invariant manifolds—subspaces of
the entire phase space on which the system trajectory can
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reside. Such manifolds commonly occur in models where
identical chaotic systems are coupled and synchronize.
Furthermore, when invariant manifolds contain chaotic
orbits, they can lead to attractor bubbling (as well as
riddled basins and on-off intermittency) [22–25].
Attractor bubbling is a situation where the system trajec-
tory irregularly and briefly leaves the vicinity of an invari-
ant manifold containing a chaotic attractor as a result of an
occasional noise-induced jump into a region where orbits
are locally repelled from the invariant manifold. The sys-
tem state then follows an orbit that moves away from the
invariant manifold but eventually returns to the attractor.
These excursions of the system state to phase space regions
far from the invariant manifold are our extreme events.

To highlight the connection between attractor bubbling
and DKs, we study two nearly identical unidirectionally
coupled chaotic electronic circuits in a master (mnemonic
M) and slave (S) configuration. The state of each circuit is
described by a three-dimensional (3D) vector whose com-
ponents are related to the two voltages and the current of
each circuit (see Fig. S1 in the Supplemental Material
[26]). The temporal evolution of the state vectors is gov-
erned by the differential equations

_xM ¼ F½xM�; (1)

_x S ¼ F½xS� þ cKðxM � xsÞ; (2)

where the dot over a variable means differentiation with
respect to time, F½x� is the flow for each subsystem, c
controls the interaction strength between the subsystems,
and K is the coupling matrix. In general, the coupled
system resides in a six-dimensional (6D) phase space
spanned by (xM, xS). However, for appropriate values of
c andK, the coupled oscillators synchronize their behavior
[23], which corresponds to xM ¼ xS. Hence, the coupled-
system trajectory resides in a restricted 3D subspace (on an
invariant manifold). In this case, it is insightful to introduce
new 3D state vectors that describe the behavior on the
invariant manifold xk ¼ ðxM þ xSÞ=2 and transverse to

the manifold x? ¼ ðxM � xSÞ=2. Synchronization corre-
sponds to x? ¼ 0 and xk ¼ xM, and the basin of attraction

associated with the synchronized state is riddled.
Here, we study a pair of electronic circuits for which the

Eqs. (1) and (2) take the form

_V 1j ¼
V1j

R1

� g½V1j � V2j�; (3)

_V 2j ¼ g½V1j � V2j� � Ij þ �S;jcðV2M � V2SÞ; (4)

_I j ¼ V2j � R4Ij; (5)

for j ¼ M, S, respectively, where �S;j is the Kronecker

delta (1 if j ¼ S and 0 if j ¼ M), and

g½V� ¼ V

R2

þ Ir½expð�fVÞ � expð��rVÞ�: (6)

The values of the parameters and other details are
given in the Supplemental Material [26] and Ref. [27].
Equations (3)–(5) correspond to Eqs. (1) and (2) with xj ¼
ðV1j; V2j; IjÞT , where xT denotes the transpose of vector x,

and the coupling matrix K is such that the matrix entry
Km;n is 1 for m ¼ n ¼ 2 and 0 otherwise.

As discussed above, attractor bubbling occurs when
noise is present (e.g., thermal noise in the electronic com-
ponents), when there is a slight parameter mismatch
between the oscillators (the flows of each circuit are
slightly different), or when both effects are present, which
is the most likely situation in an experiment. Bubbling is
indicated by long excursions of high-quality synchroniza-
tion (x? close to the noise level) interspersed by brief
desynchronization events where xk takes on a large

value—an extreme event—as shown in Fig. 1(a). We illus-
trate the trajectory of a typical bubbling event in Fig. 1(b),
which is a projection of the 6D phase space onto a 3D space
containing components of the invariant manifold and of the
transverse manifold. It is seen that the trajectory remains
for most of the time on the invariant manifold xk but

FIG. 1 (color online). Experimental observation of attractor
bubbling in coupled chaotic oscillators. (a) Typically observed
temporal evolution of jx?j for c ¼ 4:4. Time is measured in
dimensionless units corresponding to the characteristic time in
the circuit (see the Supplemental Material [26]). (b) Illustration
of the system trajectory in the vicinity of a bubbling event. The
6D phase space is projected onto a 3D space, where the subscript
on the axis label indicates the ith component of the correspond-
ing vector. The arrows indicate the direction of the flow, and the
gray scale (colors) indicate the height on the ðx?Þ1 direction.

PRL 111, 198701 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 NOVEMBER 2013

198701-2



undergoes a large excursion away from the invariant mani-
fold during the bubbling event. Because of the nonlinear
folding of the flow, the trajectory is reinjected to the
invariant manifold after the bubble.

To reveal the existence of DKs, we collect a long time
series of values of jx?j, use a peak-detecting algorithm to
identify the bubbling events, and create a probability den-
sity function (PDF) for the event sizes jx?jn, defined as the
largest peak value of jx?j within a burst. The length of the
time series is great enough that the observed PDFs have
reached statistical convergence and are stationary, in the
sense that their shape does not change appreciably with the
addition of new samples. The resulting distribution is
shown in Fig. 2, where the event sizes follow approxi-
mately a power-law distribution (straight line in log-log
scale) for small to moderately large sizes (0:04< jx?jn <
1:8) with exponent �2:0� 0:1. We apply a Kolmogorov-
Smirnov (KS) statistical hypothesis test to check that the
distribution of event sizes follows a power law in this
interval. The hypothesis of a truncated power law is
rejected for the raw data because there are small but
statistically significant deviations from a straight line dec-
orating the distribution. The hypothesis of a truncated
power law is accepted with the same value of the exponent
obtained in the fit if we apply a decimation of correlated
data by resampling the raw data (Supplemental Material
[26]). This empirical observation is substantiated by a
theoretical analysis based on the statistics of the perturba-
tions affecting trajectories near the fixed point at the origin
(Supplemental Material [26]). The analysis predicts that
the exponent is �2 to leading order. Moreover, the
observed desynchronization events can be rationalized as
being associated with the structure of the repeller around
the origin, consistent with current theory of attractor
bubbling.

A substantial and significant peak in the distribution and
subsequent cutoff that deviates from the power law is
observed for the extremely large events (jx?jn > 2:4),
which we associate with dragon kings. Interestingly, the
probability mass contained in the large peak associated to
the DKs is approximately equal to the integral of the PDF

that would result if the power law extended to infinity. This
fact suggests that the DKs are events that would belong to a
power-law distribution but had their size limited by some
saturation mechanism that effectively determines a maxi-
mum size for the events in the system. The KS hypothesis
test verifies that this large peak in the PDF deviates
significantly from a pure power law, as expected from
theory, using either the raw data or the decimated data
(Supplemental Material [26]). Hence, the theory developed
using linearization near the fixed point captures the essence
of the bubbling (power law with exponent �2 and dragon
king peak of the PDF) and only fails to explain the tiny
structures decorating the distribution.
As discussed some time ago [25,28], a bubbling event is

initiated by ‘‘hot spots’’ within the chaotic attractor that
resides on the invariant manifold. The attractor is com-
posed of a large (likely infinite) number of unstable sets,
such as unstable fixed points, unstable periodic orbits, etc.
[22]. Each of these sets has an associated local transverse
Lyapunov exponent [28], which describes the tendency of a
trajectory to be attracted to or repelled from the invariant
manifold when it is in a neighborhood of the set. A system
with attractor bubbling necessarily has a distribution of
local Lyapunov exponents (see Fig. S2 in the Supplemental
Material [26]), where at least some are repelling (value
greater than zero), even though the value of the weighted
average is negative (attracting). The repelling sets corre-
spond to the hot spots on the invariant manifold.
For the coupled oscillators studied here, it was found

previously that one set in particular—the unstable, saddle-
type fixed point at xk ¼ 0—is exceedingly transversely

unstable and is the underlying originator of the largest
bubbles [27,29]. That is, there is a very high likelihood
that a bubble will occur whenever xk resides in a neighbor-
hood of the origin for some time, and the largest events
(the DKs) occur when the residence time is long and
the approach is close. The large bubble event shown in
Fig. 1(b) clearly originates near xk ¼ 0. This observation
is at the heart of the theoretical approximation for the
distribution of event sizes, where we approximate the
dynamics of perturbations by linearization of the equations
of motion [Eqs. (3)–(5), for j ¼ M, S] near the fixed point.
The influence of the fixed point in the dynamics also

allows us to predict the occurrence of a large event by real-
time observation of xM, which is equal to xk when the

subsystems are synchronized, and finding the times when it
approaches the origin. Figure 3 shows the temporal evolu-
tion of jxMj and jx?j, where it is seen that jxMj undergoes a
sustained drop and remains below an empirically deter-
mined threshold value jxMjth preceding a large bubble
(spike in jx?j), where the forecasting time is denoted by
tp. A smaller threshold is associated with a larger event

size, and hence it can be adjusted to isolate the DKs.
This description and ensuing results are confirmed by
numerical integration of Eqs. (3)–(5), which shows
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FIG. 2. Appearance of dragon kings. Bubble event-size PDF
for c ¼ 4:4. The dashed line is a fit to a power law.
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excellent agreement with the experimental observations
(Supplemental Material [26]) and demonstrates that it is
possible to forecast DKs in this relatively low-dimensional
complex system.

With this scheme to forecast DKs, we design a feedback
method to suppress them based on occasional proportional
feedback of tiny perturbations to the slave oscillator when
jxMj< jxMjth [30]. In the presence of feedback, the tem-
poral evolution of the slave oscillator [Eq. (2)] is modified
to read

_xS ¼ F½xS� þ cKðxM � xsÞ
þ ½1� �ðjxMj � jxMjthÞ�cDKKDKðxM � xsÞ; (7)

where � is the Heaviside step function, and cDK (KDK) is
the feedback strength (coupling matrix) used to suppress
DKs. For the purpose of illustration, we assume that it is
expensive or not convenient to keep this additional feed-
back coupling on all the time, and thus it is only active for a
brief interval when necessary.

Figure 4(a) shows the temporal evolution of the system
in the presence of occasional feedback. When jxMj>
jxMjth, no feedback is applied and the small bubbling
events are allowed to proceed. On the other hand, when
jxMj< jxMjth, feedback perturbations are applied that are
only 3% of the system size (defined as the maximum value
of jxMj � 4). Such small perturbation only causes a small
change in xS, yet it has a dramatic change in x?: the large
bubble is suppressed. Over a long time scale, feedback is
only applied 1.5% of the time, consistent with the fre-
quency and duration of extreme events. Thus, the total
perturbation size averaged over the whole time, including
the intervals when the perturbation is not active, corre-
sponds to 0.05% of the system size. As a result of this
occasional feedback, we observe that the largest events,
including the DKs, are entirely suppressed, as shown in the

probability density function for jx?j in Fig. 4(b). It is seen
that the small- to intermediate-size bubbles are unaffected;
only the events that would have a large size in the absence
of control are suppressed.
Our work addresses several important questions regard-

ing complex systems. We answer affirmatively and con-
clusively that (1) a particular simple but nontrivial system
displays DKs whose event-size distribution deviates sig-
nificantly upward from a power law in the tail, (2) DKs can
be predicted, and (3) this predictability can be used to
occasionally and efficiently activate countermeasures that
suppress or mitigate the effects of DKs. An important and
immediate open question is whether it is possible to easily
identify the unstable sets that are primarily responsible for
causing DKs in the wide variety of complex systems that
are already known to have attractor bubbling or in systems
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FIG. 3. Forecasting dragon kings. Temporal evolution of the
trajectory projected onto the invariant manifold (jxMj) and the
transverse space (jx?j) during attractor bubbling (c ¼ 4:4).
The largest, extreme event, which is part of the dragon king
distribution, is preceded by a long excursion of jxMj below a
threshold of jxMjth ¼ 0:50 whose value is determined empiri-
cally by minimizing the number of false predictions.
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FIG. 4 (color online). Slaying dragon kings. (a) Temporal evo-
lution of the trajectory projected onto the invariant manifold
(jxMj) and the transverse space (jx?j) during suppressed attrac-
tor bubbling. When jxMj is below jxMjth ¼ 0:50 (the horizontal
dashed line), the occasional feedback is activated, reducing the
height of a bubble (in the time interval between the two vertical
dashed lines) that would grow large otherwise. (b) Probability
density function for event size jx?jn in the presence (black) and
absence (red) of occasional proportional feedback. Here c ¼ 4:4,
cDK ¼ 0:55, Kij ¼ 1 for i ¼ j ¼ 2 and 0 otherwise, and

ðKDKÞij ¼ 1 for i ¼ j ¼ 1 and 0 otherwise. A more detailed

comparison between experiment and theory is presented in the
Supplemental Material [26].
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that may display bubbling but where it is not yet appreci-
ated that the behavior is of this type. While a specific
method that is valid in all cases is unlikely to exist, the
particular example studied here demonstrates that, with
some understanding of the burst mechanism, large DK-
type events may potentially be avoidable by devising
small, well-chosen system perturbations. Key to address-
ing this problem is the development of new tools for
analyzing models of complex systems or for time series
analysis of natural systems that can identify burst mecha-
nisms. We suggest that the use of this knowledge to devise
appropriate control strategies is a worthy pursuit given the
increasing appearance of extreme events and their impact
on society.
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