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Distribution of entanglement between macroscopically separated parties is crucial for future quantum
information networks. Surprisingly, it has been theoretically shown that two distant systems can be
entangled by sending a third system that is not entangled with either of them. Here, we experimentally
distribute entanglement and successfully prove that our transmitted light beam is indeed not entangled
with the parties’ local systems. Our work demonstrates an unexpected variant of entanglement distribution
and improves the understanding necessary to engineer multipartite quantum networks.
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Entanglement is a fundamental resource for quantum
information processing [1,2]. When a quantum protocol is
intended to be executed between remote parties, entangle-
ment distribution becomes the crucial issue. Let us consider
the simplest case of two parties, often called Alice and Bob.
Usually, the distribution of bipartite entanglement is per-
formed by generating the entangled modes at Alice’s place
and sending one of the modes to the distant party Bob.
Thereby, the mode sent from Alice to Bob is obviously
entangled with the mode kept by Alice. It was thus a surprise
when Cubitt et al. [3] theoretically showed that if more than
two modes are involved, bipartite entanglement can also be
distributed by sending fully separable states. This remark-
able and seemingly paradoxical protocol is made possible
by a specific structure of quantum correlations within an
underlying state of three modes A, B, and C. The protocol
demands the state to be separable with respect to the B|AC
and C|AB splittings and to be inseparable with respect to the
A|BC splitting. According to the classification introduced in
Ref. [4], entanglement distribution with separable states
requires a three-mode entangled state belonging to class
ITII. The protocol by Cubitt et al. [3], including further
analysis done in Refs. [5,6], considered discrete variables.
Mista and Korolkova recently showed that entanglement
distribution by separable states is also possible for continu-
ous variables [7].

Here, we report on the experimental realization of entan-
glement distribution by separable states in the regime of
continuous variables. Our experiment is in direct analogy
to the original discrete-variable protocol as proposed in
Ref. [3]. The principle of the protocol is illustrated in
Fig. 1. In the beginning of the protocol, Alice possesses
two separable modes A and C, while Bob possesses mode
B, which is separable from Alice’s modes. In the subse-
quent step I, Alice sends the ancillary mode C, which is
neither entangled with mode A nor with mode B, to Bob.
To obtain two-mode entanglement (step II), Bob mixes
his modes B and C. One output mode is then discarded,
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while the other one turns out to be entangled with A.
The distributed entanglement can be used for further
quantum information protocols [8], such as quantum
teleportation [9,10] and quantum key distribution [11].
Our protocol explores the rich structure of multimode
entanglement, which can exhibit more complex properties
and features than two-mode entanglement and which
represents a valuable resource for lots of applications
ranging from local realism tests [12] to one-way quantum
computing [13-15].
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FIG. 1 (color online). Principle of entanglement distribution
by separable states. In the beginning, Alice possesses two
separable modes A and C. Both modes are also separable with
respect to Bob’s mode B. Alice sends mode C to Bob, and he
combines his mode B with the received mode C. Finally, Alice
and Bob share an entangled system A|B’, which can be traced
back to the initial entanglement for the A|BC splitting.
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Our setup for entanglement distribution by separable
states is depicted in Fig. 2. The initial three-mode
Gaussian state is prepared by an independent source and
is distributed between Alice and Bob. The preparation
starts with a squeezed state, which interferes with a vac-
uum state at a balanced beam splitter. The beam splitter
output A is sent directly to Alice, while the other output is
superimposed with a thermal state at a second balanced
beam splitter. After the state preparation, Alice possesses
modes A and C, while Bob holds mode B. The separability
properties of this three-mode state (ABC) are checked by
a tomographic reconstruction of the full three-mode co-
variance matrix with the balanced homodyne detectors
BHD,, BHDg, and BHD, and found to be separable
with respect to the B|AC and C|AB splittings. In the next
step, Alice sends mode C to Bob, where modes B and C
interfere at a balanced beam splitter with the appropriate
phase to get rid of the correlated noise. This step creates
two-mode entanglement between Alice and Bob, which is
verified by measuring the criterion by Duan et al. [16]

Var(X, — Xp) + Var(P, + Pp) <4 (1)
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FIG. 2 (color online). Experimental setup for entanglement
distribution by separable states. The three-mode state is prepared
by overlapping a squeezed state, a vacuum state, and a thermal
state at two balanced beam splitters. This step is analogous to the
interference of modes A and C in the original protocol [7], and
the state preparation procedure does not create any entanglement
between mode B and modes A and C. After modes A and C have
been sent to Alice and mode B has been sent to Bob, the B|AC
and C|AB separability is carefully checked with balanced ho-
modyne detectors BHD,, BHDg, and BHD,. Subsequently,
Alice sends separable mode C to Bob. By overlapping modes
C and B at another balanced beam splitter BS;, entanglement is
established between Alice and Bob, which is verified by bal-
anced homodyne detectors BHD, and BHDp . For details on the
squeezed-light source and the generation of the thermal state, see
the Supplemental Material [20].

using the homodyne detectors BHD, and BHD. Here, X
and P describe the amplitude and phase quadrature opera-
tors, respectively. They are normalized to the shot noise
level, i.e., Var(X) = Var(P) = 1 for a vacuum state. With
our setup as described above, the protocol of entanglement
distribution by separable states gets an intuitive view:
correlated classical noise mixed into modes B and C
restricts the entanglement to just one of the three bipartite
splittings. By quantum interference at Bob’s side, the
classical noise can be removed and the distributed two-
mode entangled state be created.

For investigating the separability properties of the
three-mode state (ABC), we apply the positive partial
transposition criterion (PPT) [17,18] to the measured state.
This criterion is both necessary and sufficient for bipartite
splittings of Gaussian states with N modes with only a
single mode on one side (1|N — 1) [19]. The three-mode
state is separable with respect to mode k if the correspond-

ing covariance matrix of the partially transposed state y”®
fulfills the uncertainty relation
YO — i) =0, )

with Q = @;_, J, where J = (! 7'). This criterion is
equivalent to finding the symplectic eigenvalues of
the covariance matrix of the partially transposed state. If
the smallest symplectic eigenvalue w;, in the following
called a PPT value, is below 1, the state is inseparable
with respect to the k|ij splitting. For details, see the
Supplemental Material [20].

We named the PPT values for the different splittings
after the single mode: PPT, for the (A|BC) splitting, PPTg
for (B|AC), and PPT. for (C|AB). Our protocol thus
requires PPT, < 1(= inseparable) and PPTy, PPT.>
1 (= separable) to verify the appropriate three-mode state
for distributing entanglement by separable states.

Within our experimental setup, we can vary the follow-
ing critical parameters: the variance of the thermal state as
well as the variances of the squeezed and antisqueezed
quadratures of the squeezed state. The latter two can be
changed independently of each other by variation of the
pump power of the squeezed-light source and by variation
of additional losses.

We performed theoretical simulations to analyze the
influence of the squeezed and thermal states on the sepa-
rability properties of the generated three-mode state.
Figure 3 shows the PPT. value of the three-mode state
versus the noise power of the thermal state. Because of
the symmetry of the setup, PPTy and PPT are identical.
The PPT, value is not depicted, since this value is always
below 1 when a squeezed state is used.

The magenta lines show that the property of separabil-
ity is independent of the initial squeezing value. Hence,
the amount of classical noise necessary to prohibit entan-
glement only depends on the optical loss applied to the
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FIG. 3 (color online). Separability analysis. Theoretical simu-
lations of the PPT . value with respect to the added thermal noise
(given in dB above vacuum noise variance) are depicted. The
solid lines correspond to 10 dB initial squeezing with different
losses. To obtain the required PPT value (> 1), a minimal loss of
33% is necessary. The point of intersection with the threshold of
1 is exclusively depending on the loss and not on the actual
initial squeezing value. The parameters, which were used in our
measurements, are marked with the magenta cross.

squeezed state. Nevertheless, with higher squeezing
values, the three-mode state is farther pushed into
the separable regime with respect to the B|AC and
C|AB splittings for a sufficiently ‘“hot” thermal state.
Apart from that, higher squeezing values result in
stronger entanglement that is distributed between the
two parties.

From Fig. 3, it is also visible that the entanglement
can only be prevented by classical noise if the optical
loss applied to the squeezed state is larger than 33.3%.
This is exactly the threshold for which the bipartite
entangled state, generated by the superposition of the
squeezed and the vacuum states, is no longer Einstein-
Podolsky-Rosen entangled [21]. Einstein-Podolsky-
Rosen—entangled states are a subclass of general
entanglement, exhibiting stronger quantum correlations.
Indeed, the properties of our three-mode state show that
these correlations are so strong that the entanglement in
the bipartite splittings cannot be prevented by classical
noise.

The 21 independent elements of the symmetric 6 X 6
three-mode covariance matrix were determined from ho-
modyne measurements on modes A, B, and C. For each
quadrature measurement, we recorded 10° data points. As
input states, we used a squeezed state with —1.8 and 5.1 dB
noise reduction or amplification in the amplitude and phase
quadrature, respectively, and an elliptical thermal state
(“hot squeezed state”’) with 9.6 and 10.2 dB noise ampli-
fication. The resulting three-mode covariance matrix y
was measured as

076 004 012 -0.03 019 -0.07
004 220 005 -0.78 —0.10 —0.74
1 012 005 570 -0.29 -392 1.14
Y7l 003 —078 —029 684 -096 —3.94
0.19 -0.10 —-3.92 —-0.96 473 0.09
—-0.07 —-0.74 114 -394 0.09 592

This covariance matrix directly leads to the PPT values
PPT, = 0.89, PPTz = 1.1, and PPT, = 1.07. Thus, the
measured state fulfilled the requirements for distributing
entanglement via separable states.

Three main effects could in principle cause the masking
of the actual presence of entanglement. Two of them can
also lead to a non-Gaussian state and can thus prohibit the
application of the separability criterion for Gaussian states:
phase fluctuations due to imperfect phase locking between
signal beams and local oscillator beams and the generation
of the thermal state by random displacements of originally
squeezed states, where the distribution of random displace-
ments can be non-Gaussian. These effects are considered
in detail in the Supplemental Material [20] with the result
that none of them has any non-negligible effect in the
presented measurement.

The third effect is the influence of detection losses.
Since we are in fact interested in the separability properties
of the state before homodyne detection, the optical loss
introduced by the measurement devices has to be computa-
tionally eliminated. Indeed, the separability properties of
the state can be altered by a nonperfect detection process as
depicted in Fig. 4. The magenta curves represent the PPTp
and PPT values of the covariance matrix vy, if optical loss
within the homodyne detection is subtracted. The vertical
black lines mark the regime of our estimated detection
efficiency (quantum efficiency + visibility). We estimate
the quantum efficiency of the homodyne detector’s photo-
diodes to be about 90%. The visibilities of the homodyne
detectors were measured before each measurement and
laid in a regime of 93%-98%. For the covariance matrix
v, the detection losses are thus 11% = 5% for the
homodyne detector BHD,, 17% = 5% for BHDjp, and
16.6% =~ 5% for BHD., which leads to a lower bound of
6% and an upper bound of 22% loss. After subtracting the
losses from the three-mode covariance matrix, the lower
and upper bounds for the PPT values are 0.85 and 0.87 for
the A|BC splitting, 1.07 and 1.09 for the B|AC splitting,
and 1.04 and 1.06 for the C|AB splitting and thus fulfill the
criteria. This shows the correctness of the separability
properties regardless whether the detection loss is consid-
ered to be part of the detected state or not.

Monte Carlo simulations showed that for the 10°
measurements per homodyne setting, the statistical error
bars on the symplectic eigenvalues are of the order of
0.001. That means that the inferred separability properties
are statistically reliable even for the extreme limit of
22% loss.
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FIG. 4 (color online). Measured PPT values with subtraction
of detection losses. The magenta curves show the inferred PPTj
and PPT. values of the measured covariance matrix y for a
spectrum of computationally eliminated detection losses. Based
on independent measurements, we estimate the actual detection
loss to be greater 7% and smaller 22%. These losses do not push
the PPT values below unity. The successful demonstration of our
protocol is thus independent of the question of whether detection
loss should be corrected for or not.

After the prepared three-mode state had been checked
for its separability properties, ancilla mode C, which was
separable from modes A and B, was sent to Bob. Two-
mode entanglement between Alice and Bob was generated
by superimposing modes C and B at the balanced beam
splitter BS; with the appropriate phase, which was con-
trolled manually. The criterion by Duan et al. resulted in
3.4 (< 4), which proved that entanglement was success-
fully distributed by separable states.

In conclusion, we experimentally realized entanglement
distribution by separable states. We showed that for this
protocol, a specific three-mode state is suitable, whose
thermal noise prevented entanglement in two of the three
bipartite splittings. After transmission of a separable state,
entanglement was revealed via quantum interference. We
could show that the protocol does not work with Einstein-
Podolsky-Rosen—entangled states, since with states of this
class of entanglement, separability cannot be enforced by
introducing thermal noise. While the entanglement distri-
bution by separable states seems counterintuitive in the
first place, our experiment provides an insight into the
underlying physical mechanism behind this protocol.
From a broader perspective, our work helps to understand
the possibilities and restrictions offered by multimode
entangled quantum states and future multipartite quantum
communication networks. Our implementation also clearly
demonstrates the experimental feasibility of removing
classical noise from a decohered entangled state by quan-
tum interference if the classical noise is correlated in two
modes.
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Note added.—Recently, we became aware of another
two successful demonstrations of entanglement distribu-
tion by separable states, with continuous as well as with
discrete variables, respectively [22,23].
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