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Many cold atom experiments rely on precise atom number detection, especially in the context of

quantum-enhanced metrology where effects at the single particle level are important. Here, we investigate

the limits of atom number counting via resonant fluorescence detection for mesoscopic samples of trapped

atoms. We characterize the precision of these fluorescence measurements beginning from the single-atom

level up to more than one thousand. By investigating the primary noise sources, we obtain single-atom

resolution for atom numbers as high as 1200. This capability is an essential prerequisite for future

experiments with highly entangled states of mesoscopic atomic ensembles.
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The Heisenberg uncertainty principle sets a fundamental
limit �� ¼ 1=N on the precision at which one can deter-
mine an interferometric phase � using N particles [1]. A
prerequisite for reaching the Heisenberg-limited uncer-
tainty in a real measurement is a particle detector with
atom number variance �2

N � 1, i.e., exact particle count-
ing at the interferometer output. This capability is chal-
lenging to realize, particularly for large particle numbers.
For example, single-photon detectors suffer from limited
quantum efficiency (typically <95%), which prohibits
resolving photon numbers for N � 10 [2]. On the other
hand, single atoms can be detected with near-unit effi-
ciency by trapping them and observing their fluorescence
[3]. Here, we extend this single-atom counting capability
to mesoscopic atom numbers by high accuracy fluores-
cence measurements.

One example where single-atom resolution becomes
necessary is spectroscopy with maximally entangled states.
Here, it has been shown that Heisenberg-limited precision
requires measurement of the parity [4]. Another example is
interferometry with spin-squeezed atomic states [5], where
experimental results have shown a reduction of atom
number variance approaching a level at which single-
atom resolution becomes relevant [6]. Similarly, such
high resolution atom detection would allow the direct
observation of twin atom pairs produced via spin-changing
collisions [7–9] and enable their use for interferometry at
the Heisenberg limit.

The most common detection method for neutral atoms is
absorption imaging, but the precision of such measure-
ments on mesoscopic ensembles has thus far been limited
to the level of a few atoms [10,11]. Single-atom resolution
for small atom numbers (N � 10) has been achieved by
fluorescence detection of neutral atoms in free space [12]
as well as in magneto-optical traps (MOTs) [13–15], opti-
cal dipole traps [16], and optical cavities [17–19]. A recent
experiment explored the detection of mesoscopic ensem-
bles of atoms [20] in an optical cavity, and stability at the
single-atom level was observed in repeated measurements

for effective atom numbers as high as N ¼ 150. In this
case, however, accurate determination of the absolute atom
number was not possible due to inhomogeneous coupling
to the standing-wave probe light. On the other hand, spa-
tially resolved fluorescence measurements of atoms in
optical lattices can determine the number of singly occu-
pied sites [21–23], but atom pairs are quickly lost due to
light-assisted collisions. In contrast, here, we show exact
counting of the total atom number in mesoscopic ensem-
bles by fluorescence measurements in a MOT (see Fig. 1).

(a) (b)

FIG. 1 (color online). (a) Histogram of collected fluorescence
signal (detection time t ¼ 100 ms) and Gaussian fits to the
resulting distributions (red lines). (b) Example time traces for
different fluorescence levels. The upper and center insets show
the signal of a single atom and 100 atoms, respectively.

PRL 111, 253001 (2013)

Selected for a Viewpoint in Physics
PHY S I CA L R EV I EW LE T T E R S

week ending
20 DECEMBER 2013

0031-9007=13=111(25)=253001(5) 253001-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.253001
http://link.aps.org/viewpoint-for/10.1103/PhysRevLett.111.253001


To estimate the limits of this approach, consider a fluo-
rescence measurement ofN trapped atoms. Two competing
noise sources, fluorescence noise and noise from atom loss,
determine the maximum atom number Nmax for which
single-atom resolution is possible. Photon shot noise
(PSN) contributes a variance of N=np in terms of atom

number when detecting np photons per atom in the absence

of background photons. The signal per atom can be
expressed by np ¼ Rsc�t, where Rsc is the photon scatter-

ing rate, � is the overall photon detection efficiency, and t
is the detection time. The second noise source, atom
number fluctuations due to trap loss, contributes a vari-
ance of Nt=2�, where � is the trap lifetime. We can
determine the optimal t by minimizing the total variance

�2
N ¼ N=�Rsctþ Nt=2�. Here we find topt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�=�Rsc

p

,

which is independent of the atom number. Furthermore,
by setting �N ¼ 1 we calculate an upper bound

Nmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��Rsc=2
p

. As a concrete example, consider
87Rb (�=2� ¼ 6:1 MHz) trapped in a MOT. Each atom
fluoresces at a rate Rsc ¼ �=2� s0=ð1þ s0 þ 4�2=�2Þ,
where s0 is the saturation parameter and � is the detuning
of the laser from resonance. If we assume typical experi-
mental parameters (s0 ¼ 1, � ¼ ��=2, �¼ 0:01, and
�¼100 s), we find topt ¼ 56 ms and Nmax ¼ 1800. This

number is at least 2 orders of magnitude higher than the
atom numbers counted in previous neutral-atom experi-
ments. In what follows we show measurements approach-
ing this limit.

In our experiment, we image a MOTof 87Rb atoms onto
a low-noise CCD camera. We estimate the total efficiency
of the imaging system to be � ¼ 0:01, which includes the
numerical aperture of the aspherical objective lens (NA ¼
0:23), the camera quantum efficiency, and the transmission
of all optical elements. The MOT beam diameters typically
have a waist of w ¼ 1:5 mm during atom counting and the
peak intensity, summed over all six beams, is 23 mW=cm2,
corresponding to a saturation parameter s0 ’ 6:5. From
this, we estimate the scattering rate per atom as
Rsc’15�106 s�1 at the detuning of approximately��=2.

The histograms in Fig. 1 are generated by binning
repeated fluorescence measurements over an 8 hour time
period. The effective detection time for the measurements
is 100 ms, where each measurement integrates the fluores-
cence from two adjacent 50 ms exposures. The background
count level, recalibrated every 15 minutes, is typically less
than the signal from three atoms. For atom numbers as high
as N � 300, resolved peaks appear in the fluorescence
histograms corresponding to the signal from an exact
number of atoms. Over the same range of atom numbers,
steps can be observed in the time-resolved fluorescence
signal, coinciding with the loading or loss of individual
atoms. These features indicate atom number resolution
significantly below the single-atom level.

Based on the resolved histogram peaks, we can charac-
terize several properties of the detector. First, by fitting the

peaks to a sum of equally spaced Gaussian distribu-
tions, we calibrate the single-atom count rate to be
90310 counts=atom=s. A quadratic fit to the centroid of
all resolvable peaks as a function of N reveals no evidence
for nonlinear scaling of the count rate with atom number.
The uncertainty in the second-order fit coefficient is one
way to quantify the calibration accuracy, and we constrain
the deviation from linearity to below 0.02% at N ¼ 250
(95% confidence interval). The widths of the individual
distributions are a measure of fluorescence noise for a
given atom number. For example, at N ¼ 100 we find a
standard deviation of � ¼ 0:14 atoms growing to
� ¼ 0:27 atoms at N ¼ 230. These numbers can be com-
pared to the expected photon shot noise of �PSN ¼ 0:11 at
N ¼ 100 and �PSN ¼ 0:16 at N ¼ 230.
To characterize the detection noise �N in a general way

for higher atom numbers, we calculate the two-sample
atom variance (equivalent to the Allan variance in fre-
quency measurements)

�2
N ¼ 1

2
hðSnþ1 � SnÞ2i; (1)

where Sn and Snþ1 are the signals of consecutive measure-
ments, each integrating CCD counts for time t. This mea-
surement captures both fluorescence noise and number
fluctuations due to atom loss, but, in contrast to the histo-
grams above, is not susceptible to long term drifts in the

Integration time t (ms)

V
ar

ia
nc

e 
σ2 N

50 100 150 200 250 300 350 400
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

100 200 300 400
0

1

2

3

4

FIG. 2 (color online). Atom number variance as a function of
exposure time. For atom numbers in the range N ¼ 100 to 200,
the measured variance (circles) reaches a minimum near
t ¼ 100 ms. For short integration times �2

N is limited by photon

shot noise and additional fluorescence noise, which average in
time (dash-dot line). For long integration times, the finite life-
time is the dominant noise contribution (dashed line), where the
main loss processes, depicted in the diagram, are collisions with
background gas and light-assisted collisions. Higher atom num-
bers (N ¼ 1000 to 1100 in the inset) exhibit a higher overall
variance, but the optimal detection time is found to be similar.
The error bars represent 1-� statistical uncertainties and the solid
lines are fits based on the model described in the text.
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signal. Figure 2 shows the results of such an analysis for
atom numbers in the range N ¼ 100 to 200. It indicates
that there is an optimal detection time topt � 100 ms, after

which atom loss begins to dominate the noise. The same
analysis forN ¼ 1000 to 1100 (see Fig. 2, inset) shows that
topt does not change significantly over the full range of

atom numbers, as expected.
Taking the 100 ms detection time, we determine the

variance as a function of atom number up to N ¼ 1200
(see Fig. 3). Here, it can be seen that the single-atom
resolution threshold �N ¼ 1 is reached near N ¼ 1080.
Viewing the same data on a logarithmic plot (see Fig. 3,
inset) shows how the variance initially scales with N at low
atom numbers then changes to scaling with N2 at higher
atom numbers.

To better understand the limiting noise sources we fit an
equation of the following form to the data:

�2
N ¼ aðNÞt�1 þ bðNÞtþ cðNÞt2; (2)

where the first term represents fluorescence noise and
Photon shot noise, while the last two terms come from
atom loss—both the atom shot noise due to discrete loss
events, quantified by bðNÞ, and the decay of the mean
number of atoms, quantified by cðNÞ. In particular, we
use aðNÞ ¼ ðN=�RscÞ þ ð�NÞ2, where the first term rep-
resents photon shot noise and the second term is an addi-
tional noise source that is assumed to be uncorrelated in
time but common to all atoms in the MOT. This describes,

for example, fast frequency or intensity noise on the MOT
laser beams. To determine bðNÞ and cðNÞ we use a
master equation approach based on the rate equation
dN=dt ¼ �N=�� �N2, where both one-body loss, pa-
rametrized by �, and two-body loss, parametrized
by �, are considered (see the Supplemental Material
[24]). The resulting noise coefficients are given by
bðNÞ ¼ N=2�þ �N2, which is the dominant effect of
loss in our measurements, and cðNÞ ¼ ðN=�þ �N2Þ2=2.
A fit of the noise model to the data, for which we vary �,

�, and �, is performed individually for each atom number.
Two examples of such fits are shown in Fig. 2. We take
the means of the independent fit parameters as inputs
to the noise model to produce the curve in Fig. 3. We
extract a value for the fluorescence noise parameter of

� ¼ 1:9ð1Þ � 10�4 s1=2 (uncertainties represent 1-� sta-
tistical uncertainty). A likely source of this additional noise
in our experiment is frequency noise on the MOT lasers,
which would correspond to about 10 kHz deviations in
detuning when averaged over the detection time. We
also extract the loss parameters � ¼ 246ð44Þ s and
� ¼ 3ð3Þ � 10�7 s�1, indicating that light-assisted colli-
sions contribute only a small amount to the detection errors
at these atom numbers. Since the atom loss is well known
for all atom numbers based on the calibrated parameters,
we can improve the measurement accuracy by compensat-
ing for the loss that occurs during detection. If the raw
measurement yields the resultN, then one computes a loss-
compensated result N0 ¼ N þ Nt=2�, neglecting �.
Assuming proper measurement calibration, the limiting
noise is then given by VarðSnþ1 � SnÞ=2. Computing this
variance for the same data set yields a threshold for single
atom resolution of N ¼ 1200, coinciding with the sum of
remaining noise terms, as shown in Fig. 3. To illustrate the
meaning of these variances in terms of atom counting,
consider the fidelity, here defined as the probability of
exactly identifying the initial atom number. We evaluate
this based on a Monte Carlo simulation assuming the
measured count rate, fluorescence noise, and loss parame-
ters, and find a fidelity of 99.8% at N ¼ 10, 98.5% at
N ¼ 100, and 44% at N ¼ 1200 (for details see the
Supplemental Material [24]).
We now investigate state-selective detection of the two

hyperfine levels, jF ¼ 1i and jF ¼ 2i, in the 2S1=2 mani-

fold (see Fig. 4). The technique is based on release and
recapture of the atoms, where, during the release, atoms in
jF ¼ 2i are pushed out of the capture volume by resonant
radiation pressure. As a starting point, we measure the
efficiency of the release and recapture, as a function of
the release time, without radiation pressure. By counting
the atoms before and after the release, we find a recapture
fidelity above 99.92% for release times up to 2 ms. To
distinguish the populations we apply a laser pulse resonant
with the jF ¼ 2i ! j2P3=2; F ¼ 3i transition during the

release time (between two exposures in a single CCD
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FIG. 3 (color online). Single-atom resolution for mesoscopic
atom numbers. For the near-optimal exposure time of 100 ms the
variance �2

N reaches the limit of single-atom resolution at

N ¼ 1080. A fit to the data based on a noise model incorporating
fluorescence noise and atom loss (upper green line) allow us to
estimate the relative contribution of these noise sources (shaded
regions) and compensate for the mean atom loss (red diamonds)
as described in the text. A logarithmic plot (inset) shows how the
scaling of the variance with respect to atom number transitions
from linear to quadratic as the additional fluorescence noise
begins to dominate the shot noise.
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frame), which imparts momentum to the jF ¼ 2i atoms,
while ideally leaving the jF ¼ 1i atoms unaffected. We
measure the overall error probability for the two cases
when the atoms are prepared in either jF ¼ 2i or jF ¼ 1i
via optical pumping. The release time with equal error
probability for both states is found to be 2.2 ms, where
we measure an average fidelity of 99.6(1)%, sufficient for
detecting the state of 250 atoms with single-atom
resolution.

In summary, we have shown single-atom resolution for
fluorescence measurements of up to 1200 atoms. Our

results show that a MOT, with high trap depths, low atom
density, and high photon scattering rate, is a near ideal trap
for precise fluorescence measurements. Since the basic
experimental techniques used here are common to many
cold-atom experiments, an atom detector with this level of
performance could be implemented in many contexts. In
addition, our noise analysis is relevant for fluorescence
measurements in other atom traps such as optical dipole
traps, where we expect both atom loss from light-assisted
collisions and photon shot noise to be more severe con-
straints. In the present work, we demonstrated state-
selective detection using radiation pressure to separate
two hyperfine states, counting the atoms of one state that
remain in the trap volume. However, for many experiments
it would be advantageous to simultaneously detect the
atom number in two or more subensembles. For this, we
envision a system where atoms in the relevant quantum
states are separated spatially then individually trapped and
detected via fluorescence measurements. We are currently
developing this capability in our experiment. When com-
bined, for example, with Stern-Gerlach separation, this will
enable measurements of spin-entangled BECs at the
Heisenberg limit.
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FIG. 4 (color online). Efficiency of state-selective detection
via radiation pressure. (a) Level scheme of the 87Rb D2 tran-
sition. The push beam accelerates atoms in jF ¼ 2i out of the
capture volume while the MOT beams and repumper are off.
The atoms can be prepared in jF ¼ 1i via optical pumping.
(b) Three example measurements of the jF ¼ 2i push efficiency,
detecting the atom number before and after the push pulse
(dashed line). (c) The measured error rate without push pulse
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line). The errors for jF ¼ 2i atoms (squares) can be qualitatively
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