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The formation of extreme localizations in nonlinear dispersive media can be explained and described
within the framework of nonlinear evolution equations, such as the nonlinear Schrödinger equation (NLS).
Within the class of exact NLS breather solutions on a finite background, which describe the modulational
instability of monochromatic wave trains, the hierarchy of rational solutions localized in both time and
space is considered to provide appropriate prototypes to model rogue wave dynamics. Here, we use the
time-reversal invariance of the NLS to propose and experimentally demonstrate a new approach to
constructing strongly nonlinear localized waves focused in both time and space. The potential applications
of this time-reversal approach include remote sensing and motivated analogous experimental analysis in
other nonlinear dispersive media, such as optics, Bose-Einstein condensates, and plasma, where the wave
motion dynamics is governed by the NLS.
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Rogue waves have received considerable interest
recently [1–7]. The sudden formation of extreme waves
in the ocean is well reported and no longer doubted in the
scientific community [1]. Aside from the trivial linear
superposition principle of waves, one possible mechanism
explaining the formation of rogue waves, characterized by
being strongly localized, is the modulational instability of
weakly nonlinear monochromatic waves, which was first
discovered in water waves [8]. This instability can be
modeled within the framework of the nonlinear
Schrödinger equation (NLS) [9,10], an evolution equation
that describes the dynamics in time and space of wave
trains in waters of finite and infinite depth [2]. Within the
class of exact breather solutions on a finite background
[11,12] there is a hierarchy of solutions localized in both
time and space [13–15], which amplify the amplitude of
the carrier by a factor of 3 and higher. The solutions
owning these properties are considered to be appropriate to
describe the formation of rogue waves [3,16].
Recent observations of these doubly localized NLS

solutions in optics [17], water waves [18–20], and plasma
[21] confirm the ability of the NLS to model strong
localizations in nonlinear dispersive media and justify
the choice of the NLS approach. In this Letter, we study
the implication of the time-reversal invariance of the NLS
equation and we propose a new way to experimentally
focus rogue waves in both time and space, using the
principle of time-reversal mirrors that was first extensively
studied for acoustic and elastic waves [22]. In a standard
time-reversal experiment, the wave field radiated by a
source is first measured by an array of antennas positioned
in the far field of the source, and then it is time-reversed and
simultaneously rebroadcasted by the same antenna array.
Because of the time-reversal invariance of the wave

process, the reemitted wave field focuses back in space
and time on the original source, regardless of the complex-
ity of the propagation medium. The effects of dispersion
[23,24] and nonlinearities [25] have been experimentally
studied for acoustic waves, and it has been shown that the
time-reversed field focuses back in time and space as long
as nonlinearities do not create dissipation, i.e., as long as
the propagation distance is smaller than the shock distance.
Time-reversal in water waves has also been recently
confirmed [26]; however, the nonlinear effects were neg-
ligible in this last study.
In this Letter, we confirm experimentally the refocusing

of the time-reversed field of doubly localized NLS
breather rogue wave solutions related to the modulational
instability. Our results are in excellent agreement with
theory and show that this technique can be applied to
nonlinear waves, which propagate in a wide range of
nonlinear dispersive systems described by the NLS, and
may be used to construct new strongly localized breather-
type solutions as well as to analyze and predict rogue wave
dynamics.
The evolution dynamics in time and space of nonlinear

wave trains in deep water can be modeled using the
focusing NLS [10,27], given by
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jAj2A ¼ 0; (1)

while the free water surface elevation to first-order in
steepness is

ηðx; tÞ ¼ ReðAðx; tÞ exp ½iðk0x − ω0tÞ�Þ. (2)
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Here, k0 and ω0 are the wave number and wave frequency,
respectively. These physical values are connected through
the linear dispersion relation of deep-water waves [18]. The
deep-water NLS coefficients are valid for the condition
k0h0 ≫ 1, while h0 denotes the water depth. A scaled form
of Eq. (1) can easily be obtained by applying straightfor-
ward transformations of the time, space, and amplitude
variables [18]:

iψT þ ψXX þ 2jψ j2ψ ¼ 0. (3)

The dimensionless form of the NLS (3) admits an infinite
hierarchy of exact breather solutions ψnðX; TÞ localized in
both time and space. Breathers are pulsating localized wave
envelopes that describe the dynamics of unstable wave
trains in nonlinear dispersive media. Doubly localized
breather solutions can be expressed in terms of polynomials
GnðX; TÞ, HnðX; TÞ, and DnðX; TÞ,

ψnðX;TÞ ¼ fð−1Þn þ ½GnðX;TÞ þ iHnðX;TÞ�=½DnðX;TÞ�g
× exp ð2iTÞ; (4)

where n ∈ N labels the order of the solution. The lowest
and first-order (n ¼ 1) solution is known as the Peregrine
breather [13] and is defined as G1 ¼ 4, H1 ¼ 16T, and
D1 ¼ 1þ 4X2 þ 16T2, whereas the second-order solution
(n ¼ 2), referred to as the Akhmediev-Peregrine breather
[12,14], is determined by
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The theoretical evolution of these solutions is shown
in Fig. 1.
These breathers describe the modulation instability of

Stokes waves in the limit of infinite wave modulation
period. In particular, they significantly amplify the ampli-
tude of the carrier and therefore increase the nonlinearity
during the evolution of the monochromatic wave field.
Generally, the amplitude amplification factor of the nth
order rational solution is at X ¼ T ¼ 0 of 2nþ 1. Hence,
localized waves modeled by higher-order breathers are also
called super rogue waves. The Peregrine breather has been
recently observed in several nonlinear dispersive media
[17,18,21], whereas up to now, the second-order solution
has only been observed in water waves [7]. These obser-
vations confirm the ability of the NLS to model extreme

wave localizations, which naturally engender a severe
broadening of the spectrum during their evolution.
As the time-dependent part of the NLS equation contains

a term in ið∂A=∂tÞ, it is easy to see that if Aðx; tÞ is a
solution of Eq. (1), then A�ðx;−tÞ is also a solution.
Therefore, both ηðx; tÞ and ηðx;−tÞ describe possible
solutions for the water surface elevation. Because of this
property, we can use a time-reversal mirror to create the
time-reversed wave field ηðx;−tÞ in the whole propagating
medium. It is sufficient for the one-dimensional problem to
measure the wave field ηðx; tÞ at one unique point xM and in
the second step to rebroadcast the time-reversed signal
ηðxM;−tÞ from this unique point in order to observe the
solution ηðx;−tÞ in the whole medium. It is interesting to
see, if this approach works for waves, modeled by breather
solutions that are significantly focused in amplitude, and
thus, field strongly the nonlinearity. The time-reversal
approach has been shown to work in the linear regime
for water waves [26]. However, whether time-reversal will
generate breather solutions, which are fundamentally based
on nonlinear interactions, under experimental conditions in
a water wave tank is an open question, which is addressed
in this study.
In order to experimentally demonstrate, in water waves,

the time-reversal refocusing of a rational doubly localized
NLS breather, the experiment is performed in a unidirec-
tional flume, for two different breather solutions, following
five steps. First, we start the experiment by generating the
temporal modulation of the breather at its maximal com-
pression in water, i.e., ηðx ¼ xS; tÞ, see Eq. (2), from a
unique source: a single flap located at xS. As described by
NLS theory, the wave field radiated by this source will

FIG. 1 (color online). (a) First-order doubly localized rational
solution (Peregrine breather), which at X ¼ T ¼ 0 amplifies the
amplitude of the carrier by a factor of 3. (b) Second-order doubly
localized rational solution (Akhmediev-Peregrine breather),
which at X ¼ T ¼ 0 amplifies the amplitude of the carrier by
a factor of 5.
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propagate and decrease in amplitude during its propagation
along the wave flume. A single wave gauge, placed at
another specific position (xM) far from the wave maker,
collects this attenuated wave profile. In the third step, the
latter signal is reversed in time, thereby providing new
initial conditions to the wave generator and initiating the
next stage, which consists of generating the time-reversed
attenuated wave signal. If the time-reversal symmetry is
valid, one should expect the refocusing and the perfect
reconstruction of the initial maximal breather compression,
measured at the unchanged wave gauge position xM, as the
last step (taking into account the complex mixture between
all sinusoidal frequencies and phase components during the
complex modulation instability process). Next, we describe
the experimental setup, the experiments performed, and the
results obtained.
Experiments were conducted in a unidirectional 15 m

long wave flume with a constant water depth of h0 ¼ 1 m.
The surface gravity Stokes waves are generated by a single
flap, installed at one end of the flume, labeled as “Position
xS,” and driven by a computer-controlled hydraulic cylin-
der. At the other end, a submerged absorbing beach is
installed in the water in order to avoid wave reflections. In
the whole set of the performed experiments, the capacitance
wave gauge, which measures the surface elevation of the
water with a sampling frequency of 500 Hz, is placed 9 m
from the flap and is fixed at this position, denoted by
“Position xM.” This position has been determined to satisfy
a reasonable propagation distance in the wave flume, while
the wave gauge is still separated from the installed beach
by 3 m to prevent noticeable wave reflection effects. The
whole experimental setup is illustrated in Fig. 2.
It is important to mention that ideal experimental

conditions should be provided to minimize the dissipation
effects, which have a strong influence on the soliton
propagation during its evolution in a water wave tank.
The walls of the flume were therefore properly cleaned and
the water was filtered accordingly before performing the
experiments.
First, we generate the wave profiles of the breathers,

satisfying Eq. (1), i.e., in dimensional units, at their
maximal amplitude amplification. Figure 3 shows these
initial wave profiles; the amplitudes are amplified by a

factor of 3 for the Peregrine and of 5 for the Akhmediev-
Peregrine solution.
At that initial stage of maximal breather compression,

the focused high-amplitude waves are obviously strongly
nonlinear. It is crucial for the experiments to avoid initial
wave breaking in the wave flume. Consequently, the carrier
wave parameters, determined by the amplitude a0 and the
steepness ε0 ≔ a0k0, have to be chosen accordingly; they
are set to be a0 ¼ 0.3 cm and ε0 ¼ 0.09 for the Peregrine
and a0 ¼ 0.1 cm and ε0 ¼ 0.03 for the Akhmediev-
Peregrine solution. The chosen steepness values are far
from the experimentally determined wave breaking thresh-
olds [19,28]. Knowing the amplitude a0 and the steepness
ε0 of the background, the wave number is trivially
k0 ¼ ε0=a0. The wave frequency can then be determined
from the linear dispersion relation of waves in deep water
ω0 ¼

ffiffiffiffiffiffiffi
gk0

p
, where g ¼ 9.81 ms−2 denotes the gravita-

tional acceleration. It has been previously shown that
within the range of chosen amplitudes, the response
function of the flap can be assumed to be linear, while
surface wave profiles are generated with high accuracy
[19]. Figure 3 shows the initial conditions applied to the
flap at Position xS. As the next step, after generating the
Peregrine and the Akhmediev-Peregrine breather at their
maximal wave amplitudes of 0.9 and 0.5 cm, respectively,
we collect the wave profiles after they have declined in
amplitude, as predicted by theory, with the wave gauge at
Position xM (i.e., 9 m from the flap Position xS). The
corresponding data are shown in Figs. 4(a) and 4(b).
The third step consists of reversing these recorded

breather signals in time. These time-reversed signals,
illustrated in Figs. 4(c) and 4(d), provide new initial

Position xSPosition xM

FIG. 2 (color online). Schematic upper view illustration of the
wave flume. The single flap, driven by a hydraulic cylinder, is
installed at the right end of the wave flume at Position xS. The
wave gauge is placed 9 m from the flap, which location is labeled
by Position xM. The gauge is far away from the absorbing beach,
displayed at the left end of the flume.

0 10 20 30 40

0.3

0.9

−0.3

−0.9

0 10 20 30 40

0.5

0.1

−0.1

−0.5

(a)

(b)

FIG. 3. Initial conditions provided by theory Eq. (2) at the
position of maximal amplification, i.e., at X ¼ 0, applied to the
wave paddle at Position xS: (a) the Peregrine water wave profile
for the carrier parameters a0 ¼ 0.3 cm and ε0 ¼ 0.09; (b) the
Akhmediev-Peregrine water wave profile for the carrier param-
eters a0 ¼ 0.1 cm and ε0 ¼ 0.03.
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conditions for the wave maker in order to initiate the fourth
stage of the experiment. If the breather dynamics are time-
reversal invariant, it is expected to observe the refocusing
of the waves after reemitting these small modulated time-
reversed signals to the single flap. Note that due to the
spatial reciprocity of the NLS equation we can reemit
the time-reversed signal from the point xS and observe the
refocusing at point xM, instead of rebroadcasting the
reversed wave field from xM and expecting refocusing at
the position xS.
At the fifth and last step of the experiments, we measure

the surface elevations related to the time-reversed initial
conditions, again 9 m from the flap at Position xM. The
corresponding measurements are illustrated in Fig. 5.
Clearly, Fig. 5 shows the accurate refocusing and

reconstruction of the breather surface elevation of the
corresponding NLS solution, already presented in Fig. 3.
The results are in very good agreement with the theoretical
predictions expected at this position within the framework
of NLS hydrodynamics: The maximal amplitude of surface
water waves is of 0.9 cm for the Peregrine breather and
of 0.5 cm for the Akhmediev-Peregrine breather; these
correspond to values of amplification of amplitude related
to the corresponding NLS solution at the maximal stage of
breather compression, as generated in the first step of the
experiment. Generally, comparisons of surface wave pro-
files with theory should be conducted by taking into
account the influence of bound waves [7,19]. However,
due to the small steepness values chosen for the analysis,
the contribution of the higher Stokes harmonics is small

and the main wave dynamics can be described by Eq. (2).
The time scale is adapted to the chosen steepness values.
Since the doubly localized solutions that were investigated
describe asymptotically the case of infinite wave modula-
tion, the nonmodulated regular wave field of almost
constant amplitude should be mapped within the time
scale. These observations prove the time-reversal invari-
ance of the NLS and, especially, of strongly nonlinear water
waves. In addition, the results endorse the accuracy of the
NLS, describing the complex evolution dynamics of non-
breaking hydrodynamic rogue waves. Some discrepancies
between theory and experiment can be noted with respect
to the shape of the wave profiles, as can be seen in Fig. 5.
The latter are due to higher-order nonlinearities (Stokes
effects) and to higher-order dispersion not taken into
account in the NLS approach, as well as to occurring
experimental imperfections, including dissipation and wave
reflection, that naturally existed while conducting the
experiments. Nevertheless, the experiments are a clear
confirmation of the possibility to reconstruct strongly
localized—thus, strongly nonlinear—waves through
time-reversal. This confirms that this technique can be
used to construct new time-reversal invariant localized
solutions of nonlinear evolution equations, which consid-
erably amplify the amplitude of a wave field, therefore, also
in the case of strong nonlinearity.
To summarize, we have shown that doubly localized

NLS breather solutions can be experimentally recon-
structed using the time-reversal technique. This confirms
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FIG. 4 (color online). (a) Surface water wave profile of the in
amplitude decreased Peregrine breather, measured 9 m from the
flap at Position xM. (b) Surface water wave profile of the in
amplitude decreased Akhmediev-Peregrine breather, measured
9 m from the flap at Position xM. (c) Time-reversed signal of the
time series shown in (a), providing new initial conditions to the flap
and reemitted at Position xS. (d) Time-reversed signal of the time
series shown in (b), providing new initial conditions to the flap and
reemitted at Position xS.
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FIG. 5 (color online). (a) Comparison of the Peregrine surface
profile measured 9 m from the paddle at Position xM, starting its
evolution from time-reversed initial conditions (blue upper line)
with the expected theoretical NLS wave profile at the same
position (red bottom line). (b) Comparison of the Akhmediev-
Peregrine surface profile measured 9 m from the paddle at
Position xM, starting its evolution from time-reversed initial
conditions (blue upper line) with the expected theoretical NLS
wave profile at the same position (red bottom line).
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the time-reversal invariance of the NLS and underlines
again its accuracy in describing the propagation dynamics
of water waves. The results suggest that strongly nonlinear
localized waves may be experimentally reconstructed using
this method in other nonlinear dispersive media governed
by the NLS, such as optics, Bose-Einstein condensates, and
plasma. Potential applications of time-reversal would
include remote sensing as well as rogue wave time-series
analysis, to reconstruct the dynamics of rogue waves
already formed in oceans or fibers. It is obvious that this
method may also be applied to predict and better under-
stand the sudden occurrence of extreme wave events, still
considered to be mysterious. Numerical simulations based
on a higher-order nonlinear approach, such as the Dysthe-
type model [29], or based on fully nonlinear simulations
[30], may characterize the limitations of applicability and
restrictions of the time-reversal principle in the evolution of
NLS-type rogue waves and strongly nonlinear waves in
complex media.
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