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We report the observation of a three-body recombination resonance in an ultracold gas of cesium atoms
at a very large negative value of the s-wave scattering length. The resonance is identified as the second
triatomic Efimov resonance, which corresponds to the situation where the first excited Efimov state appears
at the threshold of three free atoms. This observation, together with a finite-temperature analysis and the
known first resonance, allows the most accurate demonstration to date of the discrete scaling behavior at the
heart of Efimov physics. For the system of three identical bosons, we obtain a scaling factor of 21.0(1.3),
close to the ideal value of 22.7.
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Efimov’s prediction of weakly bound three-body states
in a system of three resonantly interacting bosons [1,2]
is widely known as the paradigm of universal few-body
quantum physics. Its bizarre and counterintuitive proper-
ties have attracted a great deal of attention. Originally
predicted in the context of nuclear systems, Efimov states
are now challenging atomic and molecular physics and
have strong links to quantum many-body physics [3].
Experimentally, the famous scenario remained elusive
until experiments in an ultracold gas of Cs atoms revealed
the first signatures of the exotic three-body states [4]. A
key requirement for the experiments is the precise control
of two-body interactions enabled by magnetically tuned
Feshbach resonances [5]. With advances in various atomic
systems [6–17] and theoretical progress in understanding
Efimov states and related states in real systems [3,18], the
research field of few-body physics with ultracold atoms
has emerged.
Three-body recombination resonances [19] are the most

prominent signatures of Efimov states [2,20]. They emerge
when an Efimov state couples to the threshold of free
atoms at distinct negative values of the s-wave scattering
length a. The resonance positions aðnÞ− are predicted to
reflect the discrete scaling law at the heart of Efimov
physics, and for the system of three identical bosons follow
aðnÞ− ¼ 22.7nað0Þ− . Here, n ¼ 0 refers to the Efimov ground
state and n ¼ 1; 2;… refer to excited states. The starting
point að0Þ− of the infinite series, i.e., the position of the
ground-state resonance, is commonly referred to as the
three-body parameter [16,21–24].
For an observation of the second Efimov resonance, the

requirements are much more demanding than for the first
one. Extremely large values of the scattering length near
að1Þ− need to be controlled and the relevant energy scale is

lower by a factor 22.72 ≈ 500, which requires temperatures
in the range of a few nK. So far, experimental evidence for
an excited-state Efimov resonance has been obtained only
in a three-component Fermi gas of 6Li [11], but there the
scenario is more complex because of the involvement of
three different scattering lengths. Experiments on bosonic
7Li have approached suitable conditions for a three-boson
system [7,25,26] and suggest the possibility of observing
the excited-state Efimov resonance [26].
In this Letter, we report on the observation of the second

triatomic resonance in Efimov’s original three-boson sce-
nario realized with cesium atoms. Our results confirm the
existence of the first excited three-body state and allow the
currentlymost accurate test of the Efimov period.Moreover,
our results provide evidence for the existence of the
predicted universal N-body states that are linked to the
excited three-body state.
Two recent advances have prepared the ground for our

present investigations. First, we have gained control of very
large values of the scattering length (up to a few times
105a0 with a0 being Bohr’s radius), which in ultracold Cs
gases is achieved by exploiting a broad Feshbach resonance
near 800 G [21,27]. Precise values for the scattering length
as a function of the magnetic field can be obtained from
coupled-channel calculations based on the M2012 model
potentials of Refs. [21,28]. Second, Ref. [26] has provided
a model, based on an S-matrix formalism [29,30], to
describe quantitatively the finite-temperature effects on
three-body recombination near Efimov resonances.
While for the first Efimov resonance experimental con-
ditions can be realized practically in the zero-temperature
limit, finite-temperature limitations are unavoidable for the
second resonance and therefore must be properly taken into
account.
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Our experimental procedure of preparing an ultracold
sample of cesium atoms near quantum degeneracy is similar
to the one reported in Refs. [21,31]. In an additional stage,
introduced into our setup for the present work, we adiabati-
cally expand the atomic cloud into a very weak trap. The
latter is a hybridwith optical confinement by a single infrared
laser beam and magnetic confinement provided by the
curvature of the magnetic field [32]. The mean oscillation
frequency ω̄=2π of the nearly isotropic trap is about 2.6 Hz.
This very low value corresponds to a harmonic oscillator
length of ∼5 μm, which is about a factor of 5 larger than the
expected size of the second Efimov state. Our ultracold
atomic sample consists of about N ¼ 3 × 104 Cs atoms at a
temperature of 7 nKanda dimensionless phase-space density
of about 0.2.We probe the atomic cloud by in situ absorption
imaging near the zero crossing of the scattering length at
882 G. We obtain the in-trap density profile and the temper-
ature T assuming the gas is thermalized in a harmonic trap.
To study recombinative decay for different values of

the scattering length a, we ramp the magnetic field from
the final preparation field (∼820 G) [32] down to a target
value (between 818 and 787 G) [33] within 10 ms. After
a variable hold time t, between tens of milliseconds and
several seconds, we image the remaining atoms. The
maximum hold time is chosen to correspond to an atom
number decay of about 50%. In addition to the resulting
decay curves NðtÞ we record the corresponding temper-
ature evolution TðtÞ. Recombinative decay is known to be
accompanied by heating [32,34], which needs to be taken
into account when analyzing the results.
For extracting recombination rate coefficients from the

observed decay curves, we apply a model that is based
on the general differential equation for α-body loss in a
harmonically trapped thermal gas,

_N
N

¼ −Lαα
−3=2

�
N
V

�
α−1

; (1)

with the volume V ¼ ð2πkBT=mω̄2Þ3=2. The factor α−3=2

arises from the spatial integration of the density-dependent
losses.
Since three-body recombination is expected to dominate

the decay, we fix α to a value of 3, numerically integrate
Eq. (1) over time and fit the measured atomic number
evolution with L3 and the initial atom number N0 as free
parameters. In cases where there are significant contribu-
tions from higher-order decay processes, e.g., four-body
decay, the fitted L3 can be interpreted as an “effective” loss
coefficient [35] that includes all loss processes. Considering
a typical temperature change of about 50% during the decay,
a slight complication arises from the fact that L3 itself
generally depends on T, while our fit assumes constant L3.
To a good approximation, however, we can refer a fit value
for L3 to a time-averaged temperature Tavg [32] .
Figure 1(a) shows our main result, the recombination

resonance caused by an excited Efimov state. Here we plot
the fit values obtained for L3 as a function of the inverse

scattering length 1=a. Our sets of measurements (A, blue
squares and B, red circles) [32] were taken on different days
with similar trap frequencies but slightly different average
temperatures Tavg of 7.7(1.7) and 9.6(9) nK [32]. Our results
exhibit a loss peak near a ¼ −17000a0 (∼797 G), which
we interpret as a clear manifestation of the second Efimov
resonance. Multiplying að0Þ− ¼ −963a0 [32] by Efimov’s
ideal scaling factor of 22.7 predicts that, in the zero-
temperature limit, this feature would occur at −21900a0
[dashed vertical line in Fig. 1(a)]. At finite temperatures,
however, a down-shift towards somewhat lower values of jaj
is expected [4] andmay to a large extent explain the observed
position. The finite temperature in our experiment also
explains why the resonance is not as pronounced as the first
Efimov resonance observed previously [21].
In order to compare our results with theoretical pre-

dictions, we use the finite-temperature model of Ref. [26]

FIG. 1 (color online). Observation of the second triatomic
Efimov resonance. In (a) we show the effective three-body loss
coefficient L3 as a function of the inverse scattering length. Blue
squares and red circles are two sets of measurements taken with
slightly different trap settings. The error bars include statistical
uncertainties from numerical fitting. The black solid line is the
theoretical calculation of L3 (based on the parameters of the first
Efimov resonance) at 8.65 nK (average temperature of two sets)
while the gray-shaded region corresponds to the temperature
range between 7.7 and 9.6 nK (see text). The vertical dashed line
indicates the position where the resonance would be expected in
the zero-temperature limit based on the previously investigated
first Efimov resonance [21] and Efimov’s scaling factor. In (b),
the fitted loss index α shows a larger deviation from a value of 3
in the regions (gray-shaded) away from the second Efimov
resonance (white region, where α < 3.5), indicating contributions
from higher-order recombination processes.
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with the two resonance parameters, position að0Þ− ¼ −963a0
and decay parameter ηð0Þ− ¼ 0.10 [32], independently
derived from previous measurements on the first Efimov
resonance. For the temperature we use Tavg ¼ 8.65 nK,
which is the mean value for the two sets. The agreement
between our present results and the prediction [black solid
line in Fig. 1(a)] is remarkable, and highlights the discrete
scaling behavior of the Efimov scenario.
The measurements on the “shoulder” of the resonance

[−104a0=a > 1.2 in Fig. 1(a)] show a broad increase of the
effective L3 as compared to the expectation from the three-
body loss theory [black solid line in Fig. 1(a)]. Since similar
enhanced loss features were observed previously near the
first Efimov resonance [7,25,36–38] and were explained by
the presence of four- or five-body states associated with an
Efimov state, we attribute this feature to higher-order decay
processes. To check this, we fit set B [39] with Eq. (1) as
discussed above, while now using α as an additional free
parameter. The fit results for α are shown in Fig. 1(b). In the
region close to the Efimov resonance (white region II),
where we expect dominant three-body behavior, the value
of α is relatively close to 3 [40]. On the shoulder of the
Efimov peak (gray-shaded region III), a significant increase
of α, compared to the resonance region, confirms the
existence of higher-order decay processes. It is interesting
to note that the relatively broad shoulder that we observe
for the higher-order features is in contrast to the narrow
features observed in 7Li [7,25]. On the other side of the
Efimov resonance (gray-shaded region I), we also observe
an enhancement of α, which is likely to be caused by
similar higher-order decay features associated with highly
excited N-body cluster states.
The temperature uncertainty plays an important role in

the interpretation of our results. The measured values of L3

depend sensitively on the temperature, with a general
scaling ∝ T3 according to the volume V in Eq. (1). The
theoretical L3 values also depend strongly on the temper-
ature. The gray-shaded area in Fig. 1(a) demonstrates the
variation between 7.7 and 9.6 nK, which correspond to Tavg
for sets A and B, respectively. It may be seen that the
temperature uncertainty results mainly in an amplitude
error rather than an error in the peak position.
To analyze the observed resonance in more detail, and

especially to study the possible small deviation of að1Þ− from
a predicted value of 22.7að0Þ− , we now fit the results in the
resonance region (0 < −104a0=a < 1.2 in Fig. 2) with the
finite-temperature model to extract an experimental value
for að1Þ− . Here, because of the large effect of the temperature
uncertainty, we use the temperature T as an additional
parameter in the fits. The results (blue dashed and red
dotted lines in Fig. 2 for sets A and B) are summarized in
the upper part of Table I and yield a mean að1Þ− value
of −20270ð680Þa0.
The fitted results for the temperature, 8.7(2) nK for set A

and 10.0(2) nK for set B, are somewhat larger than the
independently determined temperatures Tavg, but they are

consistent with Tavg within the error range. The higher
temperatures also imply a rescaling of the measured L3

values because of the temperature dependence of the
volume V. With these corrections, Fig. 2 shows that the
measurements of set A, taken at a lower temperature, now
produce larger L3 values than those of set B.
Uncertainties in L3 might also arise from errors in the

atom number calibration, resulting from imaging imper-
fections and errors in trap frequency measurements. To
account for these effects, we follow an alternative fitting
strategy and introduce an additional parameter λ as an
amplitude scaling factor for L3 into the finite-temperature
model, while fixing the temperature at the measured Tavg.
The resulting parameters for each set are given in the lower
part of Table I. Remarkably, this alternative approach
gives a mean value of −20120ð630Þa0 for að1Þ− , which is
consistent with the one extracted before. This shows the

FIG. 2 (color online). Fits to the second Efimov resonance. The
two sets of points represent the same sets of results as in Fig. 1,
but limited to the resonance region and with one clear outlyer
removed. In addition, the absolute scaling for L3 is changed as we
here use the fit values (see text) for the temperature, 8.7 nK for set
A and 10.0 nK for set B, to calculate the volume V. The vertical
dashed line is the same as in Fig. 1. The fits to sets A and B are
plotted as blue dashed and red dotted lines, respectively.

TABLE I. Fitted parameters for the second Efimov resonance.
The upper part of the Table shows the fitting results when
temperature T is a free parameter, while the lower part corre-
sponds to fixed-temperature fitting with λ as a free amplitude
scaling factor. The uncertainties indicate 1σ errors from fitting.

Set T=nK að1Þ− =a0 ηð1Þ− λ

A 8.7(2) −20 790ð390Þ 0.15(2) � � �
B 10.0(2) −19 740ð430Þ 0.19(3) � � �
A 7.7a −20 580ð390Þ 0.17(3) 0.52(5)
B 9.6a −19 650ð430Þ 0.19(3) 0.80(7)
aIndicates that the corresponding parameter is kept fixed.
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robustness of our result for að1Þ− . From all the four fits listed
in Table I, we derive a mean value and a corresponding
uncertainty of −20190ð660Þa0.
A final significant contribution to our error budget for

að1Þ− stems from uncertainty in the M2012 potential model
[21,28] that provides the mapping between the measured
magnetic field B and the scattering length a. To quantify
this, we have recalculated the derivatives of all the
experimental quantities fitted in Ref. [28] with respect to
the potential parameters, and used them to obtain fully
correlated uncertainties in the calculated scattering lengths
at the magnetic fields B ¼ 852.90 and 795.56 G, corre-
sponding to the two Efimov loss maxima, using the
procedure of Ref. [41]. The resulting scattering lengths
and their 1σ uncertainties are að0Þ− ¼ −963ð6Þa0 and
að1Þ− ¼ −20190ð1000Þa0. These values accord well with
the uncertainty in the position of the Feshbach resonance
pole, which was determined to be 786.8(6) G in Ref. [28]
with a 2σ uncertainty.
Taking all these uncertainties into account, we get að1Þ− ¼

−20190ð1200Þa0 and að0Þ− ¼ −963ð11Þa0, and we finally
obtain að1Þ− =að0Þ− ¼ 21.0ð1.3Þ for the Efimov period. This
result is consistent with the ideal value of 22.7 within a 1.3σ
uncertainty range. Theories that take the finite interaction
range into account consistently predict corrections toward
somewhat lower values than 22.7 [42–44]. Reference [24]
predicts a value of 17.1 in the limit of strongly entrance-
channel-dominated Feshbach resonances. This theoretical
value differs by 3σ from our experimental result, but the
precise value depends at a 10% level on a form factor that
accounts for the range of the coupling between the open
and closed channels. Universal van der Waals theory [45]
applied to our specific Feshbach resonance predicts a
value that is smaller than the ideal Efimov factor by only
5%–10% [46], which would match our observation.
Additional systematic uncertaintiesmay slightly influence

our experimental determination of the Efimov period. Model
dependence in the earlier fit to various interaction-dependent
observables in Cs [28] may somewhat affect the mapping
aðBÞ from magnetic field to scattering length. The finite-
temperature model [26] applied here, which employs the
zero-range approximation,maybe influencedby small finite-
range corrections. Moreover, confinement-induced effects
may play an additional role even in the very weak trap
[47,48]. While an accurate characterization of these possible
systematic effects will require further effort, we estimate that
our error budget is dominated by the statistical uncertainties.
Previous experiments aimed at determining the Efimov

period in 39K [6] and 7Li [7,25] considered recombination
minima for a > 0, fromwhich values of 25(4) and 16.0(1.3)
were extracted, respectively. There the lower recombination
minima serving as lower reference points appear at quite
small values of the scattering length (typically only at 3 to 4
times the van der Waals length RvdW [5]), so that substantial
quantitative deviations from Efimov’s scenario, which is
strictly valid only in the zero-range limit jaj=RvdW → ∞,

may be expected. In our case the lower reference point að0Þ−
is at about −9.5RvdW (with RvdW ¼ 101a0 for Cs) [21–24],
which makes the situation more robust. Moreover, at
negative scattering length possible effects related to a
nonuniversal behavior of the weakly bound dimer state
are avoided [49]. Another difference between our work and
previous determinations of the Efimov period is the char-
acter of the Feshbach resonance, which in our case is the
most extreme case so far discovered of an entrance-channel-
dominated resonance, where the whole interaction can be
reduced to an effective single-channel model [5]. The
resonances exploited in 39K and 7Li have intermediate
character, so that the interpretation is less straightforward.
In conclusion, our observation of the second triatomic

recombination resonance in an ultracold gas of Cs atoms
demonstrates the existence of an excited Efimov state.
Together with a previous observation of the first resonance
and an analysis based on finite-temperature theory, our
results provide an accurate quantitative test of Efimov’s
scenario of three resonantly interacting bosons. The char-
acter of the extremely broad Feshbach resonance that we
use for interaction tuning avoids complications from the
two-channel nature of the problem and brings the situation
in a real atomic system as close as possible to Efimov’s
original idea. The value of 21.0(1.3) that we extract for the
Efimov period is very close to the ideal value of 22.7 and
represents the most accurate demonstration so far of the
discrete scaling behavior at the heart of Efimov physics.
Our results challenge theory to describe accurately the
small deviations that occur in real atomic systems.
New possibilities for Efimov physics beyond the original

three-boson scenario are opened up by ultracold mixtures
with large mass imbalance [50]. The 133Cs-6Li mixture,
where the Efimov period is reduced to a value of 4.88, has
been identified as a particularly interesting system [51,52].
Two very recent preprints [53,54] report the observation of
consecutive Efimov resonances in this system.
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