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We present a compact formula for the complete tree-level S-matrix of pure Yang-Mills and gravity
theories in arbitrary spacetime dimensions. The new formula for the scattering of n particles is given by an
integral over the positions of n points on a sphere restricted to satisfy a dimension-independent set of
equations. The integrand is constructed using the reduced Pfaffian of a 2n × 2n matrix, Ψ, that depends
on momenta and polarization vectors. In its simplest form, the gravity integrand is a reduced determinant
which is the square of the Pfaffian in the Yang-Mills integrand. Gauge invariance is completely manifest as
it follows from a simple property of the Pfaffian.

DOI: 10.1103/PhysRevLett.113.171601 PACS numbers: 11.10.Kk, 11.15.Bt, 11.55.Bq

Introduction.—In a recent work [1], we pointed out the
existence of equations connecting the space of kinematic
invariants of n massless particles in any dimension and
that of the positions of n points on a sphere. The equations
are given by

X
b≠a

sab
σa − σb

¼ 0 for a ∈ f1; 2;…; ng; ð1Þ

where sab ¼ ðka þ kbÞ2 ¼ 2ka · kb, and σc is the position
of the cth puncture. Motivated by some remarkable proper-
ties of these equations, namely, their connection to general
kinematic invariants and Kawai-Lewellen-Tye (KLT)
orthogonality [2], it was proposed that they are the back-
bone of the tree-level S-matrix of massless particles in any
dimension and were called the scattering equations.
The scattering equations are invariant under SLð2;CÞ

transformations when external vectors satisfy momentum
conservation. They already made an appearance in previous
literature in [3–6], and, in particular, in Ref. [7] by one of the
authors in studying fundamental Bern-Carrasco-Johansson
(BCJ) relations [8] in four dimensions [9]. The validity
of the BCJ relations for gauge-theoretical amplitudes in
any dimension [8,10,11] also provides an important piece
of evidence for the universal relevance of the scattering
equations.
In Ref. [1], we also proposed the existence of formulas

for the complete S-matrix of Yang-Mills and gravity
theories in any dimension. In this Letter, we provide the
explicit construction of such formulas.
Preliminaries.—The first step towards the construction

of formulas in any spacetime dimension is that of the
measure. Given that only n − 3 of the n scattering equations
are linearly independent, one has to find a way of imposing
their support in a permutation-invariant manner. This is
achieved by noticing that

Y
a
0δ
�X

b≠a

sab
σab

�
≔σijσjkσki

Y
a≠i;j;k

δ

�X
b≠a

sab
σab

�
ð2Þ

is independent of the choice fi; j; kg and, hence,
permutation invariant. Here and in the rest of this
Letter, σab≔σa − σb.
Let us denote the n-gluon partial amplitude with the

canonical ordering 1; 2;…; n as An and the n-graviton
amplitude asMn. It is now natural to propose the following
formulations of their S matrices:

An ¼
Z

dnσ
volSLð2;CÞ

Y
a
0δ
�X

b≠a

sab
σab

�
Enðfk; ϵ; σgÞ
σ12…σn1

; ð3Þ

Mn ¼
Z

dnσ
volSLð2;CÞ

Y
a
0δ
�X

b≠a

sab
σab

�
E2
nðfk; ϵ; σgÞ; ð4Þ

where Enðfk; ϵ; σgÞ is a permutation-invariant function of
momenta kμa, polarization vectors ϵμa, and σa. Note that the
SLð2;CÞ invariance of the integrand constrains En: under
an SLð2;CÞ transformation, σa → ðAσa þ BÞ=ðCσa þDÞ,
E must transform as

Enðfk; ϵ; σgÞ → Enðfk; ϵ; σgÞ
Yn
a¼1

ðCσa þDÞ2: ð5Þ

It is also natural to expect that En should be gauge invariant
for each solution of the scattering equations.
At this point, it is worth to spell out how the measure is

computed in practice, which uncovers a beautiful relation
to a matrix found previously in the literature and, hence,
shows its permutation invariance. Consider the object

Z
dnσ

volSLð2;CÞ
Y

a
0δ
�X

b≠a

sab
σab

�
I ; ð6Þ
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where I represents either the integrand of Yang-Mills or
that of gravity. Using a Fadeev-Popov procedure to gauge
fix the SLð2;CÞ redundancy and, hence, fix the value of,
say, σp, σq, σr, one finds that Eq. (6) becomes

Z Y
c≠p;q;r

dσcðσpqσqrσrpÞðσijσjkσkiÞ
Y

a≠i;j;k
δ

�X
b≠a

sab
σab

�
I : ð7Þ

The delta functions completely localize all integrals. As
proven in Ref. [1], the scattering equations have ðn − 3Þ!
solutions, and the answer is obtained by evaluating a
Jacobian and the integrand on them. The Jacobian can
be computed by starting with an n × n matrix Φ defined by

Φab ¼
8<
:

sab
ðσa−σbÞ2 ; a ≠ b

−
P
c≠a

sac
ðσa−σcÞ2 ; a ¼ b: ð8Þ

The fact that the delta functions exclude fi; j; kgmeans that
we have to delete those rows from Φ while having fixed the
values of σp, σq, σr means that we have to delete columns
fp; q; rg. Let us denote the corresponding minor by jΦjijkpqr.
This minor is the Jacobian we are after. The answer is then

X
fσg∈ solutions

ðσpqσqrσrpÞðσijσjkσkiÞ
jΦjijkpqr

I : ð9Þ

Precisely the combination that appears in this equation is
what was called det0Φ by Cachazo and Geyer in Ref. [12]
(inspired by a remarkable formula for maximally-helicity-
violating gravity amplitudes found by Hodges in Ref. [13])
and which is known to be completely permutation invari-
ant, i.e., independent of the choices made in selecting
fi; j; kg and fp; q; rg. More explicitly,

det0Φ≔
jΦjijkpqr

ðσpqσqrσrpÞðσijσjkσkiÞ
: ð10Þ

Explicit form of Enðfk; ϵ; σgÞ.—In order to present the
explicit form of Enðfk; ϵ; σgÞ, we first define the following
2n × 2n antisymmetric matrix:

Ψ ¼
�
A −CT

C B

�
; ð11Þ

where A, B, and C are n × n matrices. The first two
matrices have components

Aab ¼
� sab

σa−σb
; a ≠ b

0; a ¼ b;
Bab ¼

� 2ϵa·ϵb
σa−σb

; a ≠ b

0; a ¼ b;
ð12Þ

while the third is given by

Cab ¼
8<
:

2ϵa·kb
σa−σb

; a ≠ b

−
P
c≠a

2ϵa·kc
σa−σc

; a ¼ b: ð13Þ

The first important observation is that while the Pfaffian
of Ψ is zero, removing rows i; j, and columns i; j with
1 ≤ i < j ≤ n gives rise to a new matrix Ψij

ij with nonzero
Pfaffian and such that

Pf 0Ψ≔
ð−1Þiþj

ðσi − σjÞ
PfðΨij

ijÞ ð14Þ

is independent of the choice of i and j. We call Pf 0Ψ the
reduced Pfaffian of Ψ.
The Pfaffian of Ψ vanishes because its first n rows

(or columns) are linearly dependent: actually, the n × 2n
matrix ðA;−CTÞ has two null vectors, ð1;…; 1Þ and
ðσ1;…; σnÞ, thus, ðPfΨÞ2 ¼ detΨ ¼ 0. Now we turn to
the proof that the reduced Pfaffian is invariant under
permutations of particle labels. First note that simultaneous
interchanges of two columns and rows change the sign of
the Pfaffian. When exchanging two particle labels a; b,
which are different from i; j, we must exchange rows and
columns a; b and also exchange aþ n; bþ n; when
exchanging particle labels i; j, we only exchange iþ n;
jþ n in Ψij

ij, and the additional minus sign cancels with the
minus sign from the prefactor in the definition of Pf 0Ψ.
Hence, in both cases the reduced Pfaffian is invariant.
Therefore, to prove permutation invariance, it suffices to
prove that the reduced Pfaffian obtained from removing
columns and rows 1, 2 and that from removing 1, 3 are
identical.
We multiply the first row and column of Ψ12

12 by σ13, and
the first row and column of Ψ13

13 by σ12, and obtain two
matrices we call Ψ012

12 and Ψ
013
13. Next, we take a multiple of

the ði − 2Þth row and column of Ψ012
12 by σ1i and add all the

multiples to the first row and column, respectively, for
i ¼ 4;…; n; in this way, we obtain a new matrix Ψ″12

12, and
similarly, we have Ψ″13

13, whose Pfaffians are related to the
original ones by PfΨ″12

12 ¼ σ13PfΨ12
12, PfΨ

″13
13 ¼ σ12PfΨ13

13.
By the scattering equations, it is straightforward to show
that the first row and column of Ψ″12

12 only differ from the
first row and column of Ψ″13

13 by a minus sign; note that
other columns and rows of the two new matrices are
identical, thus, PfΨ12

12=σ12 ¼ −ðPfΨ13
13Þ=ðσ13Þ. We con-

clude that the reduced Pfaffian Pf 0Ψ is permutation
invariant with respect to the particle labels.
Now we are ready to write down the proposal

Enðfk; ϵ; σgÞ ¼ Pf 0Ψðfk; ϵ; σgÞ: ð15Þ

Combining this proposal for En with the general formula
(3) and (4) gives the main results of this Letter: a formula
for the tree-level S-matrix of Yang-Mills in any dimension
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An ¼
1

vol SLð2;CÞ
Z

dnσ
σ12 � � � σn1

Y
a
0δ
�X

b≠a

sab
σab

�
Pf 0Ψ:

ð16Þ
And, using the KLT construction in the form discussed in
Refs. [1,12] and the KLTorthogonality proven in Ref. [1], a
formula for the tree-level S-matrix of gravity

Mn ¼
1

vol SLð2;CÞ
Z

dnσ
Y

a
0δ
�X

b≠a

sab
σab

�
Pf 0ΨPf 0 ~Ψ: ð17Þ

Here, ~Ψ is taken to meanΨðk; ~ϵ; σÞ and where ~ϵa represents
the same physical polarization as ϵa. In its simplest form,
one can choose ~ϵa ¼ ϵa and obtain

Mn ¼
1

vol SLð2;CÞ
Z

dnσ
Y

a
0δ
�X

b≠a

sab
σab

�
det0Ψ; ð18Þ

where det0Ψ is defined as detΨij
ij=σ

2
ij.

Finally, it is worth to also write both formulas in a form
where all the integrals have been performed using Eqs. (9)
and (10)

An ¼
X

fσg∈solutions

1

σ12 � � � σn1
Pf 0Ψðfk; ϵ; σgÞ

det0Φ
ð19Þ

and

Mn ¼
X

fσg∈solutions

det0Ψðfk; ϵ; σgÞ
det0Φ

: ð20Þ

Properties and checks.—Simple properties such as
multilinearity in polarization vectors, SLð2;CÞ invariance,
and its mass dimension are easy to check by using the
expansion of the Pfaffian or its recursion relation (analo-
gous to those of the determinant). Gauge invariance, as the
statement that the amplitude vanishes when any ϵμa is
replaced by a multiple of kμa, is obvious since two columns
of the matrixΨ and, hence, ofΨij

ij become multiples of each
other under the replacement. More explicitly, assume that
ϵμi is replaced by k

μ
i , then it can be easily seen that columns i

and iþ n of Ψ become identical after realizing that

Cii ¼ −
X
c≠i

2ϵi · kc
σi − σc

→ −
X
c≠i

2ki · kc
σi − σc

¼ 0 ð21Þ

by the scattering equations. The last property which is
manifest is the behavior under soft limits. As discussed in
detail in Ref. [1], when we take kn → 0, n − 1 of the
scattering equations become identical to those of a system
with n − 1 particles. The last equation

X
b≠n

snb
σn − σb

¼ 0 ð22Þ

becomes a polynomial for σn of degree n − 3 (due to
momentum conservation). In this discussion, we focus on
Yang-Mills amplitudes. It is convenient to compute Pf 0Ψ
using Ψij

ij with i ≠ n, j ≠ n. The Pfaffian of a 2m × 2m
matrix E satisfies a recursion relation of the form
PfðEÞ ¼ P

2m
q¼1ð−1ÞqepqPfðEpq

pqÞ. Using this formula to

expand PfΨij
ij setting p ¼ n, one finds that in the soft

limit, only one term contributes and gives

PfΨij
ij → CnnPfΨ

ijnð2nÞ
ijnð2nÞ: ð23Þ

Very nicely, PfΨijnð2nÞ
ijnð2nÞ is independent of kn and ϵn and

leads to Pf 0Ψn−1, i.e., the reduced Pfaffian for n − 1
particles. Using the explicit formula (16) in the soft limit,
one finds

An →
Xðn−4Þ!
i¼1

I
Γ
dσn

P
a≠n

2ϵn·ka
σnaP

a≠n
2kn·ka
σna

σn−1;1
σn−1;nσn;1

I ðiÞ
n−1; ð24Þ

where I ðiÞ
n−1 are the terms in the expansion of Eq. (19) for

An−1, and all σa’s with a ∈ f1; 2;…; n − 1g are taken to be
evaluated on the ith solution. Also, the contour Γ is defined
to encircle the n − 3 zeroes of the first factor in the
denominator [14]. Using the residue theorem, one finds
that there is no contribution at infinity, and only two poles
have nonvanishing residue. These are at σn ¼ σn−1 and at
σn ¼ σ1. The residues are trivial to compute as only one
term from the sum in the numerator and one from that in
the denominator contribute, giving rise to

An →

�
ϵn · kn−1
kn · kn−1

þ ϵn · k1
kn · k1

�
An−1; ð25Þ

which is the correct soft behavior [15]. A completely
analogous computation gives the correct soft behavior
for gravity as well. Factorization of the amplitude on
physical poles is a more involved computation and details
are provided in Ref. [16].
We have also performed some nontrivial checks, such as

the agreement of our formula for gluons with formulas
available in the literature for three-, four-, and five-particle
scattering in any dimension (see, e.g., Ref. [17] for n ¼ 3, 4
and Ref. [18] for n ¼ 5). The case with five particles is the
most interesting one as the scattering equations in dimen-
sions greater than four do not factor, and the two solutions
come from an irreducible quadratic equation. This is the
first case that our formula clearly computes the amplitudes
in a novel way. We also performed numerical checks
that when evaluated in four-dimensional kinematics, our
formula reproduces all amplitudes with n ≤ 8 and in all
possible helicity sectors (including the all plus and all but
one plus).
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Discussion.—We have presented a formula for the
complete tree-level S-matrix of gluons and gravitons in
any spacetime dimension. While formulas in dimensions
less than ten could exploit the presence of supersymmetry
in defining an on-shell superspace, such as the formula
of Witten and of Roiban, Spradlin, and Volovich does in
four dimensions [19], our formula necessarily depends on
polarization vectors as it is also valid in dimensions where
supersymmetry does not exist. Any formula which contains
polarization vectors must satisfy the constraint that it
vanishes when any polarization vector is replaced by a
multiple of its momentum vector. What we have found in
this work is that there exists a very compact formula in
which gauge invariance is actually a simple property of
its intrinsic structure, and, indeed, it was the main clue for
its derivation.
As discussed in Ref. [20] and more recently in

Refs. [1,21], there are compact formulas for string ampli-
tudes in terms of Yang-Mills or gravity amplitudes, and
our proposal here also provides a simple representation
of string amplitudes in terms of polarization vectors. In
relation to string amplitudes, it is important to mention an
intriguing connection to their high energy scattering limit.
In the work of Gross and Mende [4], the scattering
equations appear as the conditions imposed by the saddle
point evaluation of the string amplitude. It is tempting to
suggest that this is more than a coincidence.
Finally, also worth mentioning is that all ðn − 3Þ!

solutions of the scattering equations give rise to gauge-
invariant contributions. Moreover, under factorization lim-
its, each term in Eqs. (19) and (20) either develops a pole
and “factors,” or it remains finite. This is reminiscent of
the behavior of partial amplitudes in Yang-Mills theory
where a decomposition of the full amplitude is made in
parts that do not exhibit all factorization channels. Adding
the fact that in dimensions greater than four the ðn − 3Þ! do
not split into sectors, it is natural to suggest that each
solution is a “partial amplitude.” In Yang-Mills theory, this
decomposition is in addition to the usual color ordering
one, while in gravity, it is all there is. It would be
fascinating to fully uncover the physical meaning of this
new decomposition.

This work is supported by Perimeter Institute for
Theoretical Physics. Research at Perimeter Institute is
supported by the Government of Canada through
Industry Canada and by the Province of Ontario through
the Ministry of Research & Innovation.

Note added.—Recently, more detailed discussions of our
prescription and its application in scalar theories were
summarized in Ref. [22], the validity of our formula was
proven by Ref. [23] using Britto-Cachazo-Feng-Witten
recursion relations [24,25], and ambitwistor string models
were constructed in Ref. [26] that produce our formula.
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