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An analysis is conducted of the multipartite entanglement for Gaussian states generated by the parametric
down-conversion of a femtosecond frequency comb. Using a recently introduced method for constructing
optimal entanglement criteria, a family of tests is formulated for mode decompositions that extends beyond
the traditional bipartition analyses. A numerical optimization over this family is performed to achieve
maximal significance of entanglement verification. For experimentally prepared 4-, 6-, and 10-mode states,
full entanglement is certified for all of the 14, 202, and 115 974 possible nontrivial partitions, respectively.
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Introduction.—One of the most fundamental concepts
in quantum physics is entanglement [1–3]. This property
plays a central role in a host of quantum technologies,
including metrology, imaging, communication, and quan-
tum information processing [4–6]. Protocols in each of
these domains rely upon the existence of nonclassical
correlations among a multitude of subsystems within a
multimode state [7–9]. As such, reliable, readily imple-
mentable, and versatile means of characterizing entangle-
ment are essential for assessing the utility of certain states
as well as understanding the fundamental physics under-
lying quantum interactions.
One method for identifying entanglement is formulated in

terms of positive—but not completely positive—maps. The
most prominent example of such a map is the partial
transposition (PT) [10]. For bipartite Gaussian states, which
are completely characterized by the covariance matrix, it has
been shown that the PT criterion is necessary and sufficient
to identify entanglement [11,12]. In the multipartite case,
however, the PT criteria can only diagnose entanglement
among bipartitions. Moreover, bound entangled Gaussian
states are known to exist whose entanglement cannot be
detected with the PT criterion. Such states have been
formulated in theory and also realized in experiments
[13,14]. Additionally, a number of moment-based entangle-
ment probes have been successfully deployed to characterize
entanglement, e.g., Refs. [15–24].
These criteria have been enormously successful at

experimentally diagnosing entanglement among various
beams [25,26] or among different parties of a multimode
beam [27,28]. Alternatively, several studies have acquired
the covariance matrix for a multidimensional state, which
enables implementation of the PT criterion as a means for
examining the nonclassical correlations among multiple
beams [29,30]. In each of these situations, however, the
employed methods restrict multipartite dynamics to the set
of all possible bipartite state divisions.

Another well-established method for identifying entan-
glement is formulated in terms of entanglement witnesses
[31,32]. In particular, the separability eigenvalue equations
have recently been introduced as a method for constructing
optimal witnesses [33,34]. The solutions of these coupled
equations yield powerful entanglement assessments not
only for bipartite divisions but also for high-order multi-
partite divisions of discrete and continuous variable quan-
tum systems.
This Letter formulates entanglement conditions for

multimode Gaussian states and subsequently demonstrates
their application on an experimentally realized quantum
ultrafast frequency comb. This quantum state, which is
generated by the parametric down-conversion of a classical
frequency comb, was recently shown to exhibit bipartite
entanglement among its underlying frequency bands [35].
The covariance matrix for this high-dimensional quantum
object has been measured, which renders it a unique test
bed for exploring novel multipartite entanglement metrics.
Importantly, we will show in this Letter that the criteria
developed from the separability eigenvalue equations are
able to examine nonclassical aspects of the frequency comb
not feasible with strictly bipartite methods. Within this class
of criteria, the significance of the verified entanglement is
optimized with a genetic algorithm, which allows us to
fully verify the entanglement present in highly complex
multiparty quantum systems. For the 10-mode system
considered here, entanglement is certified for each of the
115 974 possible nontrivial mode partitions.
Gaussian states and mode decompositions.—Gaussian

states are described by a Gaussian characteristic function
on a multimode phase space (for an introduction, see,
e.g., Ref. [36]). The amplitude and phase quadratures of
individual modes are denoted by x̂k and p̂k, respectively,
and a vector of quadratures is defined as

ξ̂ ¼ ðx̂1;…; x̂N; p̂1;…; p̂NÞT: ð1Þ
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The covariance matrix C is then specified by its entries

Cij ¼ 1

2
hξ̂iξ̂j þ ξ̂jξ̂ii − hξ̂iihξ̂ji: ð2Þ

First-order moments are irrelevant for entanglement since
local unitary displacement operations may be applied to
yield hξ̂i ¼ 0. Thus, without loss of generality, we can
assume that all of the information for a Gaussian state is
contained in its second-order moments.
The initial set of N orthonormal modes, on which the

multimode quantum state is defined, can be decomposed
into many different partitions, each one distributing the
N modes in K different and complementary subsystems
I1∶…∶IK, with K being any integer between 1 and N.
A quantum state is considered entangled with respect
to a given mode partitioning if one is not able to write
it as a statistical mixture of product density matrices
ϱ̂1 ⊗ … ⊗ ϱ̂K, where ϱ̂j describes a quantum state in
subsystem I j for j ¼ 1;…; K. The case K ¼ 2 consists
of 2N−1 − 1 mode bipartitions, which are the only ones
addressed by the PT criterion. However, even if entangle-
ment does not exist among certain bipartitions, it may be
present in higher-order partitions, i.e., K > 2. Considering
that the total number of state partitions is given by the
Bell number and increases rapidly as a function of N [37],
the PT criterion addresses only a very small subset of the
rich variety of possible partitionings.
Optimal entanglement tests.—The multipartite entangle-

ment of a quantum state ρ̂ may be probed with the use of a
general Hermitian operator L̂ [33]. In particular, the state
under question is entangled with respect to a given K
partition if and only if it may be shown that

trðL̂ ρ̂Þ < gmin
I1∶…∶IK

; ð3Þ

where gmin
I1∶…∶IK

is the minimum expectation value of L̂
among all separable states of the K partition. It was
established in Ref. [33] that this minimization problem
can be solved with a set of coupled eigenvalue equations,
denoted as separability eigenvalue equations. The resulting
minimal separability eigenvalue is identical to gmin

I1∶…∶IK
.

The most general form of the operator L̂ for continuous
variable Gaussian states is given as L̂ ¼ P

i;jðMji
xxx̂ix̂j þ

Mji
pxp̂ix̂j þMji

xpx̂ip̂j þMji
ppp̂ip̂jÞ, in which the coeffi-

cients of M are freely adjustable. Accordingly, attention
may be restricted to the state’s covariance matrix.
Correlations between the amplitude and phase quadratures
are negligible for the presently studied states, which allows
the test operator L̂ to be cast as

L̂ ¼ TrðMξ̂ξ̂TÞ; with

M ¼
�
Mxx 0

0 Mpp

�
¼ MT > 0; ð4Þ

where Mxx and Mpp are coefficient matrices of the same
dimensionality as the corresponding state covariance
matrix, and the indices xx and pp refer to amplitude-
amplitude and phase-phase correlations, respectively. The
expectation value of this test operator readily follows and is
written as [38]

hL̂i ¼ trðL̂ ρ̂Þ ¼ TrðMCÞ: ð5Þ

Likewise, the minimal separability eigenvalue gmin
I1∶…∶IK

for
operators of this form has been derived in Ref. [33] and
reads as

gmin
I1∶…∶IK

¼
XK
k¼1

TrIk
½M1=2

pp;Ik
Mxx;Ik

M1=2
pp;Ik

�1=2; ð6Þ

where MIK
are the submatrices of M that contain only the

rows and columns of the modes within IK . The solution for
general Gaussian test operators is given in Ref. [39].
A partition’s entanglement is characterized in terms of its

statistical significance Σ, which compares the difference
between the expectation value hL̂i and its separable bound
gmin
I1∶…∶IK

to the experimental standard deviation σðLÞ:

Σ ¼ hL̂i − gmin
I1∶…∶IK

σðLÞ ; ð7Þ

which is the considered entanglement metric. The exper-
imental error σðLÞ is determined through error propagation
of hL̂i and yields

σðLÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i;j¼1

ð½Mij
xx�2½σðCji

xxÞ�2þ½Mij
pp�2½σðCji

ppÞ�2Þ
vuut ; ð8Þ

where σðCji
xxÞ and σðCji

ppÞ are the measured errors corre-
sponding to the covariance elements Cji

xx and Cji
pp, respec-

tively. A partition is considered to be entangled if Σ < 0,
and the statistical significance of its nonseparability is
assessed with jΣj. The coefficient matrix M may be freely
tuned in order to maximize the significance of each
partition, Σ → Σmin < 0. This optimization is achieved
with a genetic algorithm (see Refs. [39,40] for details).
Experimental realization.—Femtosecond frequency

combs contain upwards of ∼105 individual frequency
components, and the simultaneous down-conversion of
all of these frequencies in a nonlinear crystal inserted in
an optical cavity initiates a network of frequency correla-
tions that extends across the width of the resultant comb
[43]. The laser source utilized to create the entangled comb
is a titanium:sapphire mode-locked oscillator that delivers
∼6 nm FWHM pulses (∼140 fs) centered at 795 nm with a
repetition rate of 76 MHz. This pulse train is frequency
doubled, which serves to pump a below-threshold optical
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parametric oscillator (OPO) containing a 2 mm BIBO
crystal [44]. The state exiting the OPO is analyzed with
homodyne detection, in which the spectral composition
of the local oscillator (LO) is modified with an ultrafast
pulse shaper capable of independent amplitude and phase
modulation [45].
The LO spectrum is partitioned in either 4, 6, or 10 bands

of equal energy. By scanning the relative phase between the
down-converted comb and the LO, the x and p quadrature
noises are measured from the state projected onto the
spectral composition of the LO mode. The quadrature
noises are then recorded for each spectral region as well as
all possible pairs of regions. Upon doing so, a covariance
matrix is assembled that furnishes a good approximation
of the full quantum state. Cross correlations of the form
hx̂ p̂þp̂ x̂i are observed to be negligible, which enables the
covariance matrix to be expressed in a block diagonal form,
i.e., one block for the x quadrature and another for the p
quadrature [44]; cf. Eq. (4). From the data contained in the
covariance matrix, it is possible to extract special modes,
called supermodes, that are the eigenmodes of the para-
metric interaction [46] and are uncorrelated with each other.
They turn out to be significantly squeezed [35], as shown
in Table I. The existence of squeezed supermodes that
span the entire frequency spectrum is at the origin of the
entanglement that exists between the frequency bands.
Data analysis.—The genetic algorithm is implemented

for every possible partition of the states ρ̂N where N ¼ 4, 6,
and 10. The mode decompositions I1∶…∶IK are realized
with the map P∶ f1;…; Ng↦f1;…; Kg, where P maps
PðjÞ ¼ k, if and only if j ∈ Ik. Consequently, the K
partitions of the original N-member set can be arranged
in matrix form, which is adapted from the Bell triangle
(also referred to as Aitken’s array or the Peirce triangle).
The mode labels range from the highest frequency spectral
components 1 to the lowest frequency components N, in
ascending order. For example, the mode partitioning,
along with the relevant spectral components, for N ¼ 4
is depicted in Fig. 1.
Because of a measurement time ranging between ∼10

and 30 minutes per matrix, slowly varying drifts may
render the covariance matrix slightly unphysical. In order to
counter these effects, white noise is added to the exper-
imentally measured covariance matrices so that the minimal
symplectic eigenvalue of the noisy matrix becomes pos-
itive; cf. [39]. It is important to emphasize that such a local

noise convolution is a separable operation, and therefore is
unable to induce entanglement from an originally separable
state. Without this procedure, negative Σ values might
occur, which are due to a violation of positivity of the
covariance matrix instead of being authentic entanglement
evidence. This extra noise is taken into account when
obtaining Σ.
Results.—The results of our methodology for the 4-mode

states are detailed in the matrix ΣN¼4 shown below. The
significances Σ are calculated according to Eq. (7), and a
particular element in the displayed matrix corresponds to
the mode partition shown at the same position of the matrix
in Fig. 1,

ΣN¼4 ¼

0
BBBBBB@

0.01 −21.06
−11.21 −24.34 −24.59
−13.17 −23.52 −23.97
−4.66 −20.93 −21.63
−13.16 −24.03 −24.32 −24.61

1
CCCCCCA
:

TABLE I. The highest supermode squeezing (sqz.) and anti-
squeezing levels of the considered 4-, 6-, and 10-mode quantum
comb states. All of the noise levels are specified in decibels (dB).

4 modes 6 modes 10 modes

Sqz. Anti-sqz. Sqz. Anti-sqz. Sqz. Anti-sqz.

−5.1 dB 7.1 dB −2.6 dB 3.0 dB −3.7 dB 5.8 dB

795 800790

2 3

41

Wavelength (nm)

FIG. 1 (color online). Structure of 4-mode state. The spectral
components (top panel) and partitionings (bottom panel) are shown.

0 50 100 150 200
−60

−40

−20

0

20

sorted partitions

FIG. 2. Significance of all partitions for the 6-mode states
where the partitions are ordered according to the significance of
the detected entanglement. All of the values are negative except
for a single positive value, which represents the trivial partition,
K ¼ 1, and cannot be entangled.
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The first entry in the matrix is the trivial partition with only
one party, I1 ¼ f1;…; Ng, and, therefore, must not exhibit
entanglement. The following 14 partitions, however, are
each entangled to a significant degree (jΣj≳ 4, correspond-
ing to a confidence level of 99.99%). The partition
displaying the highest entanglement significance is not a
bipartition, but rather coincides with the total division of
the state into N independent structures. During the down-
conversion process, the initial onset of any quantum
correlation among the frequency bands invalidates the full
separability of the state. Thus, this partition is the first to
become entangled during down-conversion and therefore
exhibits the most significant entanglement. Conversely,
the least significantly entangled partition corresponds to
detaching the spectral wings (elements f1; 4g) from the
spectral center (elements f2; 3g). This partition indicates
an asymmetric distribution of entanglement with respect to
the central frequency of the comb. In general, symmetric
quantum correlations in the comb are stronger since the
preponderance of the down-conversion events originate
from the pump spectral center. Asymmetric frequency
correlations originate from down-conversion events dis-
placed from the pump central frequency, which therefore
occur with lower probability. Since the partition
f1; 4g∶f2; 3g demands the highest degree of asymmetric
correlations, it possesses a lowered entanglement signifi-
cance. Nevertheless, the fact that all of the nontrivial
partitions are entangled implies that each resolvable fre-
quency band is entangled with every other band (i.e., the
full entanglement of the comb). Importantly, this character-
istic of the quantum comb would go unnoticed without
the use of entanglement criteria capable of probing higher-
order state partitions, i.e., K > 2.
In the case of 6 modes, 203 unique mode partitions

are possible, and the resultant entanglement metric Σ is
displayed in Fig. 2. The results for the entire set of unique
partitions of the 10-mode scenario are likewise depicted
in Fig. 3; cf. also Ref. [39]. All of the partitions in both

the 6- and 10-mode combs are demonstrated to be
entangled except for the trivial partition.
Specific K partitions and their corresponding entangle-

ment metrics Σ are shown in Table II for the 10-mode comb
state. Within the K ¼ 2 subgroup, the most significantly
entangled partition results from bisecting the spectrum at its
center, whereas the least significantly entangled structure
originates from disconnecting the two extreme spectral
zones from the remaining spectrum. This result is con-
sistent with previous observations [35] as well as the results
shown above for the 4-mode state. Additionally, 41 863
partitions (∼36%) of the 10-mode state reveal an entangle-
ment more significant than that detected for any of the 511
possible state bipartitions. Hence, a richer understanding
of the quantum phenomena implicit in the multimode state
is afforded only upon examination of these higher-order
state partitions. As before, the complete dissolution of the
frequency comb structure into ten discrete bins is among
the most significantly entangled partitions.
It is worth noting that the number of analyzed frequency

bands is currently limited by the optical resolution of the
pulse shaper. A new generation of the setup should allow
for observing at least 30 frequency modes, as predicted by
theory in the present experimental conditions.
Conclusions.—We implemented covariance-based, high-

order entanglement criteria on the multimode squeezed
states contained within an ultrafast frequency comb. A
genetic algorithm was exploited to maximize the statistical
significance of the determined entanglement. Upon doing
so, the criterion identifies entanglement in all of the 14,
202, and 115 974 nontrivial partitions of the 4-, 6-, and
10-mode scenarios, respectively. Consequently, the quan-
tum comb exhibits full multipartite entanglement, i.e.,

0 2 4 6 8 10 12

x 10
4

−20

−15

−10

−5

0

5

sorted partitions

FIG. 3. The verified entanglement for all 115 974 nontrivial
partitions—sorted by significance Σ—for the 10-mode
frequency-comb Gaussian state.

TABLE II. The lowest and highest significances of all K
partitions, I1∶…∶IK , for the 10-mode state are given.

K Partition Σ

1 f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g þ2.7
2 f1; 10g∶f2; 3; 4; 5; 6; 7; 8; 9g −1.1
2 f1; 2; 3; 4; 5g∶f6; 7; 8; 9; 10g −17.6
3 f1; 10g∶f2; 3; 8; 9g∶f4; 5; 6; 7g −5.5
3 f1; 2; 3; 4; 5g∶f6; 9; 10g∶f7; 8g −18.9
4 f1; 10g∶f2; 9g∶f3g∶f4; 5; 6; 7; 8g −8.0
4 f1; 2; 3; 4g∶f5g∶f6; 9; 10g∶f7; 8g −20.0
5 f1; 10g∶f2g∶f3g∶f4; 5; 6; 7; 8g∶f9g −9.4
5 f1; 6g∶f2; 5g∶f3; 4g∶f7; 10g∶f8; 9g −19.8
6 f1; 10g∶f2g∶f3g∶f4; 5; 6; 7g∶f8g∶f9g −11.6
6 f1; 7g∶f2; 5g∶f3g∶f4; 10g∶f6g∶f8; 9g −19.9
7 f1; 10g∶f2g∶f3g∶f4g∶f5; 6; 7g∶f8g∶f9g −14.3
7 f1; 5g∶f2; 4g∶f3g∶f6; 9g∶f7g∶f8g∶f10g −19.8
8 f1; 10g∶f2g∶f3g∶f4; 7g∶f5g∶f6g∶f8g∶f9g −15.8
8 f1; 5g∶f2g∶f3g∶f4g∶f6g∶f7; 10g∶f8g∶f9g −19.7
9 f1; 10g∶f2g∶f3g∶f4g∶f5g∶f6g∶f7g∶f8g∶f9g −16.8
9 f1g∶f2; 5g∶f3g∶f4g∶f6g∶f7g∶f8g∶f9g∶f10g −19.7
10 f1g∶f2g∶f3g∶f4g∶f5g∶f6g∶f7g∶f8g∶f9g∶f10g −19.3
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entanglement for all partitionings. Importantly, the cur-
rently employed criterion was able to identify entanglement
not recognizable with traditional separability metrics. The
present approach allows for the identification of partially
and fully entangled states for applications in quantum
communication or cluster state computation.
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