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We have prepared two ultracold fermionic atoms in an isolated double-well potential and obtained full
control over the quantum state of this system. In particular, we can independently control the interaction
strength between the particles, their tunneling rate between the wells and the tilt of the potential.
By introducing repulsive (attractive) interparticle interactions we have realized the two-particle analog of a
Mott-insulating (charge-density-wave) state. We have also spectroscopically observed how second-order
tunneling affects the energy of the system. This work realizes the first step of a bottom-up approach to
deterministically create a single-site addressable realization of a ground-state Fermi-Hubbard system.
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In the presence of strong correlations, the understanding
of quantum many-body systems can be exceedingly diffi-
cult. One way to simplify the description of such systems
is to use a discrete model where the motion of the particles
is restricted to hopping between the sites of a lattice. The
paradigmatic example for this approach is the Hubbard
model, which reduces the physics of a quantum many-body
system to tunneling of particles between adjacent sites and
interactions between particles occupying the same site.
While this model captures essential properties of electrons
in a crystalline solid and provides a microscopic explanation
for the existence of Mott-insulating and antiferromagnetic
phases, many questions about this Hamiltonian—such as
whether it can explain d-wave superfluidity—are still
unanswered [1].
A promising approach to answer these questions is to use

ultracold atoms trapped in periodic potentials as quantum
simulators of the Hubbard model [2–8]. Such experiments
have been performed both in large- and small-scale
systems. Degenerate gases loaded into optical lattices have
been used to observe the transition to the bosonic [9,10]
and fermionic Mott insulator [3,4]. The first observation of
second-order tunneling was achieved in a small-scale
system by studying the tunneling dynamics of bosonic
atoms in an array of separated double wells [11,12]. In a
recent experiment, these two regimes have been connected
by splitting a fermionic Mott insulator into individual
double wells. In this way, the strength of the antiferro-
magnetic correlations in the many-body system could be
determined by measuring the fraction of double wells
with two atoms in the spin-singlet configuration [13].
But, despite the observation of antiferromagnetic correla-
tions [13,14], current experiments using fermionic atoms
have so far failed to reach temperatures below the critical
temperature of spin ordering [15,16].
Recently, new experimental techniques have been devel-

oped which allow for the deterministic preparation of

few-particle systems in the ground state of a single potential
well [17–19]. This makes it feasible to use ultracold atoms
to study many-body physics in a bottom-up approach, i.e.,
to start from the fundamental building block of the system
and watch how many-body effects emerge as one gradually
increases the system’s size [20]. Here we report on the
realization of the fundamental building block of the Fermi-
Hubbard model at half filling, which consists of one j↑i and
one j↓i particle in a spin-singlet configuration in a double-
well potential.
By starting from this two-site realization of the Hubbard

model, we can test our building block in a regime where the
model can still be easily solved. In the Hubbard regime, the
spatial wave function jΨi of this two-particle system can be
written in the basis fjLLi; jLRi; jRLi; jRRig. These basis
states are all possible combinations of the localized single-
particle states jLi and jRi of one particle in the ground state
of either the left or the right well. In this basis, the spatial
part of the Hamiltonian is

H ¼

0
BBB@

U þ 2Δ −J −J 0

−J 0 0 −J
−J 0 0 −J
0 −J −J U − 2Δ

1
CCCA; ð1Þ

with the tunneling matrix element J, the on-site interaction
energy U and the energy tilt 2Δ between the wells.
Diagonalizing this Hamiltonian leads to three eigenstates
(jai, jbi, and jci) which are symmetric and one eigenstate
(jdi) which is antisymmetric with respect to particle
exchange [Fig. 1(b)].
To prepare our double-well system, we start with two 6Li

atoms in different hyperfine states in the motional ground
state of a single optical microtrap [17] (Sec. I of the
Supplemental Material [21]). We then slowly ramp on a
second potential well and thereby deform our single trap
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into a double-well potential. During this process, we keep
the coupling between the wells negligible and thus initialize
the system in state (jLLi) where both atoms reside in the
ground state of the left well. This state is the starting point
for all our measurements. We can prepare it with a fidelity
of more than 90%. The predominant error is that there is
only one atom in the trapping potential, while the prob-
ability to start with three atoms is ≲1%.
Since the spatial wave function of the initial state is

symmetric with respect to particle exchange, the spin wave
function of the two fermions is in a singlet configuration.
In the experiments presented here, we do not couple the
position and the spin of the particles and therefore restrict
the spatial wave function of the system to the symmetric
eigenstates jai, jbi, and jci.
In a first set of experiments, we study the tunneling

dynamics of the two particles in our double-well potential
to characterize the Hubbard parameters J, U, and Δ of our
system. To do this, we initialize the system in state jLLi
and abruptly reduce the height of the potential barrier,
which allows the atoms to tunnel between the wells.
To observe the resulting dynamics, we let the system
evolve for different durations and then freeze the spatial

distribution of the atoms by quickly increasing the barrier
height. We then count the number of atoms in one of the
wells by recapturing them into a magneto-optical trap and
measuring their fluorescence [27] [17] (Sec. III of [21]).
For a noninteracting system and a small tilt of the double

well (jΔj≲ J), we observe long-lived tunneling oscillations
whose frequencies we can set by tuning the barrier height
(Sec. V.A, Fig. S1 and Fig. S2(a) of [21]). As an example,
a typical oscillation for Δ≃ 0 with a frequency of 2J=h≃
134 Hz is shown in Fig. 1(c). To calibrateΔ, we measure the
oscillation frequency for different tilts and find good agree-
ment with the effective coupling strength Jeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ Δ2

p
of a two-level system (Sec. V.B and Fig. S2(b) of [21]).
For an interacting system, the interaction energy creates

an effective detuning for the tunneling of a single particle.
In the limit of strong interactions and a symmetric double
well (U ≫ J and Δ ¼ 0), the atoms can therefore only
tunnel as pairs [28]. However, we can restore single-particle
tunneling by setting a tilt that compensates for the inter-
action shift [11]. This allows us to calibrate the on-site
interaction energy U by measuring the strength of single-
particle tunneling as a function of the tilt Δ for different
interaction strengths (Fig. 2). We find good agreement with

(a)

(c) (d)

(b)

FIG. 1 (color online). Experimental realization and eigenenergies of the two-site Hubbard model. (a) Experimental setup: The double-
well potential is created by focusing two laser beams with a high-resolution objective. By independently controlling the intensity and
position of the two laser beams with an acousto-optic deflector (AOD) we can tune the tunnel coupling J and the tilt Δ between the two
wells. (b) Energies of the four lowest two-particle eigenstates in a symmetric double-well potential as a function of the on-site interaction
energy U. (c),(d) Tunneling of two particles in the double well. The data show the time evolution of the particle number in the right well
after initializing the system with both particles in the left well and abruptly switching on the tunnel coupling J between the two sites.
For U ≈ 0 and Δ ≈ 0 (c), we can extract the value of the tunnel coupling by fitting the data with a damped sine wave. For intermediate
interaction strength (U ≈ J) (d), we observe correlated tunneling of the two particles, which shows good agreement with the prediction
from the Hubbard model (solid line). The error bars denote the 1σ statistical uncertainty.

PRL 114, 080402 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

27 FEBRUARY 2015

080402-2



a calculation of the interaction energy of two particles in the
single well [24] (Sec. V.C and Fig. S3 of [21]).
Using the parameters determined from these measure-

ments, the two-site Hubbard Hamiltonian [Eq. (1)] fully
describes the oscillations of two interacting particles in our
double well [solid line in Fig. 1(d)].
To use our system as a fundamental building block of the

Hubbard model, we must be able to prepare the particles in
the ground state of the symmetric double well. To achieve

this, we first initialize the system with both atoms in the left
well and a tilt Δ ≪ 0. Then, we adiabatically change the tilt
to bring the system into the ground state of the symmetric
double well [29] (Sec. VI and Fig. S4 of [21]) [30].
To show that our fundamental building block already

contains the physics that is responsible for the formation of
ordered phases in a many-body system, we first measure
the influence of the interaction energyU on the distribution
of the two particles between the wells. We therefore
determine the probabilities P1 ¼ jhΨjLRij2 þ jhΨjRLij2
of finding the two particles on different sites (single
occupancy) and P2 ¼ jhΨjLLij2 þ jhΨjRRij2 of finding
both particles on the same site (double occupancy) by
measuring the probabilities of having 0, 1, or 2 atoms in
one of the wells (Sec. VII of [21]).
In a noninteracting system (U ¼ 0), the spatial wave

function of two particles in the ground state is an equal
superposition of the basis states jLLi, jLRi, jRLi, and
jRRi. This leads to equal probabilities P1 and P2 which we
observe in our measurements [Fig. 3(a)].
In a system with strong repulsive on-site interactions, it

is energetically unfavorable to have two atoms occupying
the same site. The ground state of our system then becomes
a two-particle analog to a Mott-insulating state which we
observe as a reduction of double occupancy. For attractive
interactions we observe an increase in double occupancy
that marks the onset of a paired state. We interpret this state
as the two-particle limit of the cold gas analog of a charge-
density-wave state as described in [31]. We perform these
measurements for two different barrier heights. For the
larger barrier height (J=h≃ 67 Hz), we find good agree-
ment with the prediction of the Hubbard model [Fig. 3(a)].

FIG. 2 (color online). Single-particle and pair tunneling as a
function of the tilt Δ at an interaction energy of U=J ¼
10.05� 0.19. The data points show the time-averaged probability
of finding a single particle (green circles) or a pair of particles
(blue triangles) in the right well after initializing the system with
two atoms in the left well and switching on the tunneling. Pair
tunneling is resonant in a symmetric double well, while condi-
tional single-particle tunneling occurs for a tilt of −2Δ ¼ U.
The error bars denote the 1σ statistical uncertainty.

(a) (b)

FIG. 3 (color online). Occupation statistics as a function of interaction strength. The relative probabilities of measuring both particles
in the same well (P2, blue squares) or in different wells (P1, green circles) are shown as a function of the on-site interaction energy U.
Open (filled) symbols indicate a tunnel coupling of J=h≃ 142 Hz (J=h≃ 67 Hz), the solid lines show the prediction of the Hubbard
model. (a) For the ground state jai, double occupancy is suppressed for increasing repulsive interactions. This indicates the crossover
from a metallic to a Mott-insulating regime. For attractive interactions, double occupancy is enhanced, which we interpret as the onset of
a charge-density-wave regime. (b) For the excited state jci, we observe the crossover to the charge-density-wave regime for strong
repulsive interactions. For both measurements, the data have been corrected for the effect of the finite fidelities of preparation and
detection (Sec. VII and Fig. S5 of [21]). The error bars denote the 1σ statistical uncertainty.
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For the smaller barrier height (J=h≃ 142 Hz), we observe
a small deviation from the theoretical expectations which
might indicate that our system is approaching the limits of
the Hubbard approximation.
Since in our isolated, two-particle system excited states

are stable against relaxation, we can also prepare the system
in the highest-energy eigenstate jci (Fig. S4 of [21]). When
measuring the occupation statistics of this state as a function
of interaction strength, we find that the number of doubly
occupied sites is enhanced for repulsive interactions
[Fig. 3(b)]. This allows us to study the charge-density wave
regime in a system with repulsive interactions.
In our final measurement, we directly probe the effect of

the tunnel coupling on the energy of the system by trap
modulation spectroscopy (Sec. VIII of [21]). For this, we
initialize the system in state jci and measure the energy
difference to state jbi as a function of interaction strength.
For U ¼ 0, the atoms are delocalized over the wells
by single-particle tunneling. This leads to a change in
the kinetic energy of the system that is proportional to the
tunnel coupling J (Fig. 4). As we increase the interactions,
the system enters the insulating regime and first-order
tunneling is suppressed. However, second-order tunneling
is still possible and we observe a crossover to a new energy
scale given by the superexchange energy 4J2=U. This
energy is directly responsible for the appearance of spin
order in the ground state of the Hubbard model [32].
By combining a series of isolated double wells we can

realize a dimerized lattice [13] where each dimer contains

two fermions in a spin-singlet configuration with high
fidelity. By adiabatically lowering the barriers between the
double wells, we can then prepare a low-entropy state in a
homogeneous lattice. Since our systems can be prepared
with arbitrary filling factors they are also ideally suited to
study the effects of hole doping. Additionally, the tunability
of our potential allows us to explore finite-size lattices
with arbitrary geometries [33] and introduce controlled
disorder into our system. Finally, our experiments provide a
starting point for scalable quantum computation with
neutral atoms [34–37].
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