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According to the no-hair theorem, static black holes are described by a Schwarzschild spacetime
provided there are no other sources of the gravitational field. This requirement, however, is in astrophysical
realistic scenarios often violated, e.g., if the black hole is part of a binary system or if it is surrounded by an
accretion disk. In these cases, the black hole is distorted due to tidal forces. Nonetheless, the subsequent
formulation of the no-hair theorem holds: The contribution of the distorted black hole to the multipole
moments that describe the gravitational field close to infinity and, thus, all sources is that of a
Schwarzschild black hole. It still has no hair. This implies that there is no multipole moment induced
in the black hole and that its second Love numbers, which measure some aspects of the distortion, vanish as
was already shown in approximations to general relativity. But here we prove this property for astrophysical
relevant black holes in full general relativity.
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Introduction.—The no-hair theorem states that any
isolated static black hole is necessarily a Schwarzschild
black hole and that there is only one free parameter
describing the spacetime—the massM. Although the black
hole has actually one hair,M, this property is still called the
no-hair theorem and, thus, the black hole is called bald.
This theorem is, of course, very appealing for astrophysics,
since just one parameter has to be measured to determine
the entire spacetime around a black hole. Even if the black
hole rotates, a similar theorem holds and only the mass and
the spin have to be measured.
In fact, these two parameters are already observable, see,

e.g., Refs. [1–3]. Additionally, new observatories like
GRAVITY (see Ref. [4]) will improve these measurements
further. An independent and promising approach is the
measurement of the shadow of a black hole, see, e.g.,
Refs. [5,6] for recent results. The shadow will be resolvable
in the millimeter and submillimeter range with the Event
Horizon Telescope [7]. Moreover, the potential discovery
of a binary system containing a black hole promises
headway for characterizing black holes either via pulsar
timing if the companion is a pulsar or via the detection of
gravitational waves.
Since the no-hair theorem dictates in the rotating case

that the quadrupole moment of a black hole is determined
by its mass and spin, an independent measurement of all
three parameters allows for a test of alternative theories of
gravity or of the assumptions of the no-hair theorem, for
recent approaches see, e.g., Refs. [8–10]. For example, the
source could be described by matter distributions like
boson stars for which the no-hair theorem does not hold.
A crucial assumption for the no-hair theorem is that the

black hole is isolated; i.e., the spacetime is asymptotically
flat and contains no other sources. However, in many

astrophysical situations this requirement is not fulfilled,
e.g., for black holes in binary systems, if the black hole
is surrounded by plasma, an accretion disk, or if jets are
formed in its vicinity; i.e., it might put on different types of
wigs. These additional sources contribute also to the total
multipole moments of the spacetime. Hence, a formulation
like the standard no-hair theorem for isolated black holes
cannot hold anymore, whereas a formulation solely for the
part of the total multipole moment sourced by the black
hole might still be correct. The latter is shown in this Letter.
In the exterior field of additional sources, the black hole is
distorted and the inner geometry of the horizon changes.
This is measured by the Love numbers of the first kind or the
multipole moments of isolated horizons, see Refs. [11–13].
Nonetheless, we show here that this does not imply that the
black holes are not anymore bald. More precisely: Although
the total multipole moments of the spacetime measured at
infinity change, this is solely due to the external sources and
not to a different contribution of the black holes themselves.
In fact, distorted black holes have only a mass monopole.
Thus, even though the black hole might put on a wig it still
looks bald. Note that we assume here for simplicity static
black holes.
Distortions of static black holes and neutron stars are

of particular interest for inspirals treated in an adiabatic
regime, see, for details on the validity of this regime,
Refs. [14,15]. In such a quasistatic approximation, the
black hole or the neutron star is distorted due to the external
field of the companion instantaneously. Thus, the system
is additionally axially symmetric with respect to the axis
joining the two constituents of the binary system and the
metric of distorted black holes of Ref. [16] is applicable.
The imprints of such distortions in the gravitational waves
emitted by inspiraling binaries give information on the
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equation of state of neutron stars [14,17]. Moreover, those
imprints can be used to experimentally reveal if a con-
stituent of a binary system is a black hole. This provides an
avenue along which the existence of black holes can be
directly inferred. On the other hand, if the existence of a
black hole in a binary system is established independently
by observing, say, gamma ray bursts at later stages of the
inspiral, then the measurement of its distortions using
gravitational waves allows us to test general relativity
via the here presented no-hair theorem.
The distortions of the black holes and neutron stars are

characterized by the Love numbers of first and second kind,
hr and kr, cf. Refs. [15,18,19]. Roughly speaking, the hr
measure the changes in the shape of the horizon or the
neutron star and the kr measure the change in the asymptotic
multipole moments caused by the distortion due to an
external source, see Refs. [13,15,19–21] for their use in
general relativity. In the latter four works, it was established
using approximation methods that the kr vanish for four-
dimensional black holes. However, it was debated if this
result is still valid in the case higher orders in the approx-
imations scheme are taken into account. We resolve this
dispute here by proving the result analytically without any
approximation. Although these distortions are not crucial
to detect gravitational waves in prospective data from
Advanced LIGO and Advanced Virgo [22], they will be
important for a detailed analysis of the data and for future
detectorswith an increased sensitivity, see, e.g., Refs. [23,24].
The Love numbers of the second kind were also applied to

establish universal relations, i.e., relations that are indepen-
dent of the equation of state, between certain physical
parameters describing neutron stars, see Refs. [25–27] but
also Refs. [28–31]. The here considered black hole case
is solved analytically in full general relativity and, thus, it
serves as a test for the various approximation schemes
employed for neutron stars also in this respect.
Subsequently, we use geometric units, in which

G ¼ c ¼ 1, where c is the velocity of light and G
Newton’s gravitational constant. The metric has the sig-
nature ð−1; 1; 1; 1Þ. Greek indices run from 0 to 3 and Latin
indices run from 1 to 3.
Distorted black holes.—The metric of arbitrary static and

axially symmetric spacetimes can be written in the Weyl
form under standard assumptions, cf. Ref. [32]:

ds2 ¼ e2k−2Uðdρ2 þ dζ2Þ þW2e−2Udφ2 − e2Udt2; ð1Þ

where the functions U, k, and W depend on ρ and ζ.
Note that the metric functions U and W can be expressed
by the timelike Killing vector ξα and the spacelike Killing
vector ηα:

e2U ¼ −ξαξα; W2 ¼ −ηαηαξβξβ: ð2Þ
In the case that the exterior sources are static and

axially symmetric or allow for a quasistatic description,

the general metric near the horizon H of a distorted black
hole was found by Geroch and Hartle in Ref. [16] in the
form of Eq. (1). In a neighborhood of H, we assume pure
vacuum, which is physically reasonable if the matter can be
treated quasistatically and satisfies the energy conditions,
cf. Ref. [33]. Thus, there exists a surface SH, which encloses
H and no other sources. If SH is sufficiently close toH, the
metric functions in Eq. (1) read between SH and H

U ¼ US þUD; k ¼ kS þ kSD; W ¼ ρ: ð3Þ

The functions US and kS are given by the respective
quantities of the Schwarzschild black hole:

US ¼
1

2
log

�
rþ þ r− − 2M
rþ þ r− þ 2M

�
;

kS ¼
1

2
log

�ðrþ þ r−Þ2 − 4M2

4rþr−

�
;

r2� ¼ ρ2 þ ðζ �MÞ2: ð4Þ

Subsequently, we find that the parameter M coincides with
the Komar mass of the distorted black hole. The functionUD
is determined by the exterior matter and it solves a Laplace
equation,

� ∂2

∂ρ2 þ
1

ρ

∂
∂ρþ

∂2

∂ζ2
�
UD ¼ 0: ð5Þ

If UD vanishes, the spacetime describes a Schwarzschild
black hole. The function kSD follows from a line integration
once UD þ US is known, cf. Ref. [32]. However, we do not
require its explicit form subsequently.
The horizon of the distorted black hole is located at

the symmetry axis (ρ ¼ 0, ζ ∈ ½−M;M�) like for the
Schwarzschild black hole. In fact, in canonical Weyl
coordinates the horizon can always be located at ρ ¼ 0,
see Ref. [34]. These coordinates allow a shift in the ζ
coordinate. We employed this freedom to place the horizon
symmetrically with respect to that coordinate, i.e., that the
“north and south pole” of the horizon are characterized by
ζN=S ¼ �M, respectively. At these points, UD has to take
the same value to avoid struts, which wewant to exclude for
simplicity, see Ref. [16]. If the external matter is reflection
symmetric, like for accretion disks or jets, this is trivially
satisfied. Note that the metric functions take the form of
Eqs. (3)–(5) only in a neighborhood of H and they neither
describe directly the asymptotic behavior nor the metric in
the interior of the external source. Nonetheless, we will be
able to conclude with the help of the source integrals the
contributions of the distorted black hole to the asymptotic
multipole moments without specifying the exterior sources
in detail. These could also include other black holes. We
only require that the spacetime is asymptotically flat and
that all external sources are contained in a region, which
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does not contain H and which does not extend to infinity.
We denote its boundary by Sext.
The source integrals.—To disentangle the contributions

of the black hole and the external sources to the asymptotic
multipole moments, the source integrals proved to be the
essential tool. They were recently derived in Ref. [35] and
they make it possible to define the asymptotics of the
spacetime including the Geroch multipole moments by
evaluating quasilocal surface or volume integrals. The
respective surfaces and volumes need only to envelop or
contain all regions with a nonvanishing stress-energy
tensor. Here we need the surface integrals and introduce
the required quantities, subsequently.
The Weyl multipole moments UðrÞ are defined as the

expansion of U along the axis of symmetry close to
infinity, i.e.,

U ¼
X∞
r¼0

UðrÞ

jζjrþ1
: ð6Þ

As we will see later the coordinate ζ can be defined
geometrically so that this definition is also covariant.
Indeed, it was shown in Ref. [36] that from the UðrÞ the
Geroch multipole moments mr can be determined uniquely
by nonlinear algebraic relations. To calculate the mr, the
UðkÞ need to be known for 0 ≤ k ≤ r. Thus, it is sufficient
for us to consider here the UðrÞ. Note that the origin with
respect to which the multipole moments are measured was
chosen by requiring ζN=S ¼ �M.
Furthermore, we use the functions

NðrÞ
− ðx; yÞ ¼

X⌊r2⌋
k¼0

2ð−1Þkþ1r!x2kþ1yr−2k

4kðk!Þ2ðr − 2kÞ! ;

NðrÞ
þ ðx; yÞ ¼

X⌊r−12 ⌋

k¼0

2ð−1Þkþ1r!x2kþ2yr−2k−1

4kðk!Þ2ðr − 2k − 1Þ!ð2kþ 2Þ : ð7Þ

It can easily be checked that these functions obey the
equations

NðrÞ
þ;x − NðrÞ

−;y ¼ 0; NðrÞ
þ;y þ NðrÞ

−;x −
NðrÞ

−

x
¼ 0: ð8Þ

Commas denote partial derivatives. Additionally, let us
introduce the 1-form

Zα ¼ ϵαβγδW;βW−1ηγξδ; ð9Þ
where ϵαβγδ is the volume form of the spacetime. In
vacuum, Zα is exact and it is hypersurface orthogonal in
the entire spacetime. Since the surfaces of interest, SH and
Sext, lie in the vacuum region or its boundaries, we can
introduce a scalar Z via Z;α ¼ Zα, for technical details and
a more general treatment see Ref. [35]. It turns out that
Z ¼ ζ in canonical Weyl coordinates if the constant of
integration is suitably chosen.

With this notation at hand, we can express the Weyl
multipole moments by

UðrÞ ¼
Z
SH

ηðrÞa n̂adSH þ
Z
Sext

ηðrÞa n̂adSext;

ηðrÞa ¼ 1

8π

eU

W
ðNðrÞ

− U;a − NðrÞ
þ;WZ;aU þ NðrÞ

þ;ZW;aUÞ; ð10Þ

where n̂a denotes the outward pointing unit normal to the

surfaces SH and Sext and the functions NðrÞ
� depend on

ðx; yÞ ¼ ðW;ZÞ, see [35]. dSH and dSext are the proper
area elements of SH and Sext, respectively. In vacuum, we
can always choose canonical Weyl coordinates such that
W ¼ ρ and Z ¼ ζ.
The induced multipole moments of distorted black

holes.—With Eq. (10), we can identify the contribution
of the different sources to the asymptotic Weyl multipole
moments covariantly. The first term in Eq. (10), which we
denote UðrÞ

H , gives the contribution of the distorted black

hole and the second term, UðrÞ
ext, the contribution of the

external sources. The induced multipole moment of a

distorted black hole is now simply defined as UðrÞ
ind ¼

UðrÞ
H − UðrÞ

S , where the UðrÞ
S are the Weyl multipole

moments of an undistorted Schwarzschild black hole.
They coincide with the Newtonian multipole moments of a
line mass of uniform density, see Ref. [32]. We parameter-
ize SH for constant angles φ from the “north pole” to
the “south pole” (s ∈ ½sN; sS� ↦ ðρðsÞ; ζðsÞ;φ ¼ constÞ),
cf. Ref. [35]. Then we obtain with Eq. (3) the UðrÞ

H :

UðrÞ
H ¼ 1

4

Z
sS

sN

½NðrÞ
− ðUS þUDÞ;n

− ðNðrÞ
þ;WZ;n − NðrÞ

þ;ZW;nÞðUS þ UDÞ�ds; ð11Þ
where we denote by f;n the normal derivative −f;ρðd=dsÞ
ζðsÞ þ f;ζðd=dsÞρðsÞ. The multipole moments of a
Schwarzschild black hole can be inferred from Eq. (11)
by settingUD ¼ 0. For the induced multipole moments, we
have in turn only to subtract this Schwarzschild contribu-
tion from Eq. (11) and get

UðrÞ
ind ¼

1

4

Z
sS

sN

½NðrÞ
− UD;n − NðrÞ

þ;WZ;nUDþNðrÞ
þ;ZW;nUD�ds:

ð12Þ

Applying the divergence theorem and Eq. (5), we can

rewrite UðrÞ
ind:

UðrÞ
ind ¼

1

8π

Z
VH

1

ρ

�
UD;ρ

�
NðrÞ

−;ρ þ NðrÞ
þ;ζ −

NðrÞ
−

ρ

�

þUD;ζðNðrÞ
−;ζ − NðrÞ

þ;ρÞ
�
dVH; ð13Þ
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which vanishes by virtue of Eq. (8). VH is the coordinate
volume enclosed by SH and H in canonical Weyl coor-
dinates. Thus, the induced multipole moments vanish and
the contribution of the distorted black hole to the asymp-
totic Weyl multipole moments is the same as that of a
Schwarzschild black hole. With the results in Refs. [35,36],
this can readily be translated to Geroch’s multipole
moments. This generalizes the no-hair theorem to black
holes that are distorted by external matter. Note that this
matter sources the gravitational field, too. Hence, the total
asymptotic multipole moments differ in general from those
of a Schwarzschild spacetime. This holds in particular for
systems of two black holes. In the above derivation, the
origin with respect to which the multipole moments are
measured is chosen in the center of one of the black holes.
Thus, the other black hole regarded as external matter
contributes, for instance, a nonvanishing quadrupole
moment to the total one, cf. the comment after Eq. (6).
The vanishing of the induced multipole moments implies

that the second Love numbers kr vanish, too, because they

are proportional to UðrÞ
ind. This is corroborated by the results

in Refs. [15,19–21]. But here we did not use any approxi-
mation or linearization. The result holds in full general
relativity. Thus, one can assume kr ¼ 0 for black holes,
which rotate sufficiently slowly, in binary systems when
calculating the emitted gravitational radiation during the
adiabatic regime. Note that kr ¼ 0 is specific to black
holes. It does not hold for neutron stars, cf. Ref. [19].
Nonetheless, the source integrals of the Weyl multipole
moments are still tailored to calculate their kr, since the
contributions from the individual sources to the Weyl
multipole moments are separated covariantly and a defi-
nition of an induced multipole moment becomes possible in
full general relativity. Moreover, it simplifies the evaluation
of the source integrals in Ref. [35] in the presence of
black holes considerably, since we have only to calculate

the mass of the individual black holes to know all UðrÞ
H .

If the black holes rotate sufficiently slowly, there are
several implications for astrophysics: On the one hand,
measuring the mass of the black hole determines its
contribution to the multipole moments completely. In
binary systems containing a black hole or for a black hole
with an accretion disc, the mass of the black hole can be
inferred from the mass of the entire system measured by the
motion of distant stars and the mass of the companion star
or disc. After that all multipole moments of the black hole
are fixed. Thus, every measurement of the multipole
moments of the entire system, say, the quadrupole moment,
determines the quadrupole moment of the companion or the
disc. On the other hand, if the quadrupole moment of both,
the entire system and the companion star or disc can be
measured, then general relativity can be tested.
The multipole moments of the horizon.—Whereas the

distorted black hole has the same asymptotic multipole
moments as a Schwarzschild black hole, the horizon

geometry clearly changes. This can be easily seen by
evaluating the covariantly defined multipoles Mn of iso-
lated horizons following Refs. [11,12]. The scheme out-
lined therein was independently carried out in Ref. [13]
using Schwarzschild-like coordinates. In that paper, it was
found that the multipole moments of the distorted horizon
are different from those of the Schwarzschild black hole.
In fact, these deviations were used to define a relativistic
analogue of the first Love numbers for black holes, which
do not vanish in contrast to the second Love numbers.
The change in the geometry of the horizon is, however,

not reflected in the asymptotic multipole moments. This, at
first glance, counterintuitive behavior can be understood
with a trivial Newtonian example. Consider a point mass
and its multipoles. All multipole moments but the mass
vanish and the equipotential surfaces are spheres. If an
additional gravitational field generated by, say, a second
point mass separated from the first is introduced, the
multipole moments of the original point mass, which
can be evaluated with Newtonian source integrals, are
unchanged. In fact, the point particle has no inner structure
and, thus, cannot be distorted by an external gravitational
field and the source stays the same. Nonetheless, the
equipotential surfaces are no longer spheres analogously
to the distorted horizon. The situation changes of course,
if an internal structure is assumed, like one would have to
do for the description of neutron stars. Then the external
gravitational field can indeed deform the matter distribution
and the sources, which can be measured in the asymptotic
multipole moments.
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