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The condensation of fermion pairs lies at the heart of superfluidity. However, for strongly correlated
systems with reduced dimensionality the mechanisms of pairing and condensation are still not fully
understood. In our experiment we use ultracold atoms as a generic model system to study the phase
transition from a normal to a condensed phase in a strongly interacting quasi-two-dimensional Fermi gas.
Using a novel method, we obtain the in situ pair momentum distribution of the strongly interacting system
and observe the emergence of a low-momentum condensate at low temperatures. By tuning temperature
and interaction strength, we map out the phase diagram of the quasi-2D BEC-BCS crossover.
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The characteristics of quantum many-body systems are
strongly affected by their dimensionality and the strength of
interparticle correlations. In particular, strongly correlated
two-dimensional fermionic systems have been of interest
because of their connection to high-Tc superconductivity.
Although they have been the subject of intense theoretical
studies [1–8], a complete theoretical framework has not yet
been established.
Ultracold quantum gases are an ideal realization for

exploring strongly interacting 2D Fermi gases, as they offer
the possibility of independently tuning the dimensionality
and the strength of interparticle interactions. Reducing the
dimensionality [9] led to the observation of a Berezinskii-
Kosterlitz-Thouless (BKT)-type phase transition to a super-
fluid phase in weakly interacting 2D Bose gases [10,11].
Tuning the strength of interactions in a three-dimensional
two-component Fermi gas made it possible to explore
the crossover between a molecular Bose-Einstein
Condensate (BEC) and a BCS superfluid [12–15].
Recently, efforts have been made to combine reduced

dimensionality with the tunability of interactions and to
experimentally explore ultracold 2D Fermi gases [16–21].
However, the phase transition to a condensed phase has not
yet been observed. Here, we report on the condensation of
pairs of fermions in the quasi-2D BEC-BCS crossover.
The BEC-BCS crossover smoothly links a bosonic

superfluid of tightly bound diatomic molecules to a
fermionic superfluid of Cooper pairs in 2D as well as
3D systems. However, changing the dimensionality leads to
some inherent differences. In two dimensions, there is a
two-body bound state for all values of the interparticle
interaction. Furthermore, because of the enhanced role of
fluctuations in 2D, true long-range order is forbidden for
homogeneous systems at finite temperature [22,23]. Still, a
low temperature superfluid phase with quasi-long-range
order can emerge due to the BKT mechanism [24,25].

In a 2D gas with contact interactions, the interactions can
be described by the 2D scattering length a2D. Using the
Fermi wave vector kF, the dimensionless crossover param-
eter is given by lnðkFa2DÞ. The crossover regime is reached
for j lnðkFa2DÞj≲ 1. For lnðkFa2DÞ ≪ −1, the binding
energy is large and the system consists of deeply bound
bosonic dimers. For lnðkFa2DÞ ≫ 1, the dimer binding
energy tends to zero. For a thermal energy kBT significantly
larger than the binding energy, the dimers are dissociated due
to thermal excitations and the system becomes fermionic.
Two-dimensional gases are realized by a strongly aniso-

tropic confinement, which leads to a freezing out of the
degrees of freedom in one spatial direction. Such a quasi-
2D gas captures the essential properties of a 2D system.
Corrections to the 2D physics may arise from the residual
influence of the third dimension.
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FIG. 1 (color online). Experimental setup. A quasi-2D gas (the
red disk) is created by loading a two-component ultracold Fermi
gas of 6Li atoms into a single layer of a standing-wave trap
created by two interfering laser beams (λ ¼ 1064 nm, the green
arrows) that cross under a small angle (14°). Using absorption
imaging along the vertical direction (the red arrow) we obtain the
column density of the sample.
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We perform our measurements using a two-component
Fermi gas of 6Li atoms in the lowest two Zeeman sublevels,
which we denote as j1i and j2i [26]. The ultracold gas
initially consists of 40000–50000 atoms per spin state,
which are bound into dimers at a temperature of approx-
imately 50 nK and a magnetic offset field of 795 G
(lz=a3D ¼ 1.08) [27]. It is loaded into a hybrid trap
consisting of a single layer of a standing-wave optical
dipole potential and a weak magnetic potential. The
combined trapping frequencies are ωx ¼ 2π×17.88ð3ÞHz
and ωy ¼ 2π × 17.82ð4Þ Hz in radial, and ωz ¼
2π × 5.53ð3Þ kHz in axial direction. This leads to a pan-
cake-shaped cloud with an aspect ratio of ωz=ωr ≈ 310 (see
Fig. 1) and an axial harmonic oscillator length lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mωz

p

≈ 551 nm with the reduced Planck’s constant
ℏ, the atommassm, and the axial trapping frequencyωz. We
ensure that there is no significant population of axially
excited states by measuring the axial momentum distribu-
tion of the gas [18,27]. Assuming that the internal structure
of pairs, i.e., the relative wave function of the fermions
inside the pairs, has only negligible effect beyond the
two-body sector [36], our system can be described in
the 2D framework with the effective 2D scattering length
a2D ¼ lz

ffiffiffiffiffiffiffiffiffi

π=A
p

exp½− ffiffiffiffiffiffiffiffi

π=2
p ðlz=a3DÞ� [3,16,27,37], where

A ¼ 0.905.
To explore the phase diagram of the quasi-2D BEC-BCS

crossover, we tune the temperature by heating the sample,
and the interaction strength by adiabatically ramping the
magnetic offset field to values between 692 G
(lz=a3D ¼ 7.11) and 982 G (lz=a3D ¼ −2.35) [27]. We
probe the 2D density distribution via absorption imaging
along the vertical direction (see Fig. 1). The density
distributions for different interaction strengths are shown
in Fig. 2(a) for the coldest accessible temperatures. For
growing lnðkFa2DÞ, the width of the sample increases while
its central density decreases from approximately 2.7=μm2

at lnðkFa2DÞ ¼ −7.13 to approximately 0.76=μm2 at
lnðkFa2DÞ ¼ 3.24. This change of the density distribution

illustrates the crossover from a dense condensate of bosonic
molecules to a degenerate Fermi gas whose density is
reduced by the Fermi pressure. However the phase tran-
sition into a condensed phase, which manifests itself in the
enhanced density of pairs with vanishing momentum, is not
directly visible in the measured density distributions.
We thus conceived a method to probe the in situ pair

momentum distribution of our strongly interacting system
by combining a quench of interactions with a matter wave
focusing technique inwhich the sample expands ballistically
in a weakly confining radial harmonic potential [38–41].
Because of its large aspect ratio, our sample expands

rapidly and almost exclusively in the z direction after the
release from the optical trap. Hence, its density suddenly
drops and interactions between the expanding particles are
quenched. Redistribution of momentum in the radial
direction during the expansion is thus negligible at the
weakest probed interaction strengths and does not affect the
momentum distribution. To minimize interaction effects
also in the strongly interacting regime, we perform a fast
ramp to the lowest accessible interaction strength on the
BEC side (B ¼ 692 G, lz=a3D ¼ 7.11) on a time scale
shorter than 125 μs just before the release. This is fast
enough that the density and momentum distributions
cannot adjust to the new interaction parameter [27,41].
At the same time, pairs of atoms are projected onto deeply
bound molecules whose binding energy EB significantly
exceeds the energy scale given by the axial confinement
(ℏωz) and one obtains the pair momentum distribution [42].
A similar technique was already used to explore the three-
dimensional BEC-BCS crossover [13,14,44]. However,
these experiments could not take advantage of the inter-
action quench and the subsequent ballistic expansion since
they were lacking the fast expansion in the z direction.
To obtain the radial momentum distribution, we perform

this ballistic expansion in a weakly confining harmonic
potential with trap frequency ωexp ¼ 2πνexp in the radial
direction. In a simple picture, the harmonic potential acts as a
matter wave lens and brings the far field distribution to finite

FIG. 2 (color online). Density distributions at the lowest accessible temperature for different interaction strengths. (a) In situ density
distribution obtained from absorption imaging along the z axis. (b) Pair momentum distribution obtained from the τ=4 method with a
pair projection ramp to lz=a3D ¼ 7.11 (692 G). The strong enhancement at low momenta in the momentum distribution for
lnðkFa2DÞ < 3.24 is a clear signature of pair condensation. Each picture is the average of about 30 individual measurements. The
temperature of the samples ranges from 64 nK at lnðkFa2DÞ ¼ −7.13 to 78 nK at lnðkFa2DÞ ¼ 3.24.
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time scales. After an expansion time of texp ¼ τ=4,
where τ ¼ 1=νexp is the period of the harmonic potential,
the position of each particle depends only on its initial
momentum in the radial plane. Thus nðx; t ¼ τ=4Þ ¼
~n(ℏk=ðmωexpÞ; t ¼ 0) and hence, by imaging the density
profile after texp ¼ τ=4, wegain direct access to the initial 2D
momentum distribution [38,39,41]. In our case, the radial
trap frequency is ωexp ≃ 2π × 10 Hz, which leads to texp ¼
25 ms [27]. In contrast to conventional time-of-flight
expansion,where the initial spatial distribution of the sample
influences the obtainedmomentumdistribution—especially
at low momenta—distortions are negligible in this method.
By combining the interaction quench with the projection

onto molecules and the τ=4 momentum imaging, we are
able to access the radial in situ pair momentum distribution
~nðkÞ in the whole crossover regime.
Figure 2(b) shows the obtained pair momentum distribu-

tions for the coldest attainable temperature at different
interaction strengths. One observes a dramatic enhancement
at lowmomentawhichmanifests itself in a sharp central peak.
This feature is strongest on the BEC side and persists above
lnðkFa2DÞ ¼ 0 and the 3D Feshbach resonance, until it
vanishes at lnðkFa2DÞ ≈ 3.2 on the BCS side. Comparing
the data at the two largest depicted values of lnðkFa2DÞ, one
observes that the peak momentum density ~n0 changes by
almost an order ofmagnitude,whereas the in situpeak density
n0 changes by less than 10%.As ~n0 is a measure for the long-
range coherence of the system [45], the observed abrupt
change indicates the phase transition to the condensed phase.
For amore quantitative analysis of our data,we azimuthally

average the pair momentum distribution. Figure 3(a) shows
the obtained radial distribution for the coldest accessible
temperature measured at 782 G, which corresponds to
lz=a3D ¼ 1.55 [lnðkFa2DÞ ≈ −0.51].We extract the temper-
ature T of the sample from the high momentum tail of the
radial distribution, which is well described by a Gaussian.
Note that before the ramp of the interaction strength, the
thermal part of the gas consists of molecules for
lz=a3D > 0.55, free atoms for lz=a3D < −0.46, and a
mixtureof atoms andmolecules between these two interaction
strengths [27]. For each investigated interaction strength and
temperature, we determine the Fermi wave vector and the
Fermi temperature from the in situ peak density according to
k2F ¼ 2mkBTF=ℏ2 ¼ 4πn0. Here, m refers to the mass of a
6Li atom and kB is Boltzmann’s constant. This definition
employs the local density approximation at the trap center and
allows us to compare the obtained data to predictions for the
homogeneous system. Note that n0 ¼ n0;j1i ¼ n0;j2i, where
n0;jii is the peak density of atoms in state jii.
At low momenta, a fraction of the momentum density

lies above the Gaussian fit [the gray area in Fig. 3(a)]. We
define this quantity as the nonthermal fraction Nq=N [46]
and investigate its behavior as a function of the degeneracy
temperature T=TF [see Fig. 3(b)]. While the non-Gaussian
fraction vanishes for T=TF ≳ 0.5, it slowly grows for

decreasing temperatures. For T=TF ≲ 0.2, the slope
increases until we reach Nq=N ≈ 0.6 for the coldest
samples. This is in agreement with theoretical predictions
[47–49] and previous experimental results [40,45,50,51],
which find a presuperfluid increase of low-momentum
states for temperatures above the superfluid transition
temperature Tc. This behavior inhibits a precise determi-
nation of the transition temperature Tc from Nq=N. To
obtain an estimate for the critical temperature, we instead
plot the normalized peak momentum density ~n0=n0 as a
function of temperature, as shown in Fig. 3(c). This
quantity is a measure for the fraction of the sample which
exhibits long-range phase coherence [45]. The innermost
pixel of the momentum distribution corresponds to a
coherence length well above 20 μm, which is approxi-
mately 1 order of magnitude larger than the thermal
wavelength of the coldest samples. The normalized peak
momentum density shows a sudden change of slope which
we assume will occur at the phase transition. We estimate
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FIG. 3 (color online). Quantitative analysis of the momentum
distribution at lz=a3D ¼ 1.55. (a) Radial momentum distribution
~nðkÞ at the coldest accessible temperature. We logarithmically
plot ~nðkÞ as a function of k2. The thermal wing thus appears as a
straight line from which we extract the temperature of the sample
with a Boltzmann fit (line). The figure is the average of about 30
individual measurements. (b) Nonthermal fraction Nq=N as a
function of T=TF. Nq is indicated by the gray area in (a).
(c) Normalized peak momentum density ~n0=n0 as a function of
T=TF. The intersection of linear fits to the high and low
temperature regime yields the critical temperature Tc=TF. Each
data point in (b) and (c) is the average of about 30 individual
measurements; the error bars indicate the standard error of the
mean. Solid lines indicate the fitted data range.
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Tc=TF by the intersection of linear fits to the regimes above
and below the phase transition. For the example shown in
Fig. 3, this results in a critical temperature of
Tc=TF ¼ 0.129ð35Þ, where the statistical uncertainty is
obtained from the standard errors of the two linear fits. The
critical phase space density is ρc ¼ n0;cλ2dB;c ¼ 3.9ð6Þ,
where λdB;c and n0;c are the thermal de Broglie wavelength
and the peak in situ density at the critical temperature,
respectively.
By repeating this analysis for all investigated interaction

strengths, we obtain the transition temperature as a function
of the interaction parameter lnðkFa2DÞ. The resulting values
are shown as black dots in Fig. 4 together with the
corresponding non-Gaussian fraction Nq=N, which is
displayed as a color scale. Comparing the data for
Tc=TF and Nq=N, one finds that the phase transition
occurs at a significant non-Gaussian fraction of Nq=N ≈
0.3 for all measured interaction strengths.
On the BEC side of the phase diagram, one observes a

slow increase of the measured critical temperature towards
the crossover region. Within their statistical uncertainties,
the measured values of Tc=TF are in good agreement with
an effective description in terms of 2D bosons [52]. This
theoretical prediction describes a BKT transition into a
superfluid phase with algebraically decaying phase coher-
ence. Interestingly, the bosonic theory provides a reasonable
description of the data up to lnðkFa2DÞ ¼ 0, where the 2D
scattering amplitude diverges. This indicates that the fer-
mionic nature of the constituents of the bosonic dimers has
only a small effect on the many-body physics of the system
up to this point. The crossover to a fermionic description
should thus occur at positive values of lnðkFa2DÞ. This is in
line with recent theoretical predictions [6,53].
Far on the BCS side, fermionic theories predict an expo-

nential decrease of Tc=TF [7,54]. Although we can only give

an upper limit for the critical temperature Tc=TF ≤ 0.16
for lnðkFa2DÞ ≥ 2, the observed non-Gaussian fraction is
consistent with a decrease towards the BCS limit. However,
Tc=TF is systematically above the theoretical predictions for
lnðkFa2DÞ > 0 [7,8,52]. Part of this deviation might be due to
the residual influence of the third dimension. In our system,
residual axial excitations grow with increasing lnðkFa2DÞ
[27]. Recently, it was predicted that they would lead to an
increased critical temperature [55]. Additionally, the three-
dimensional internal structure of atom pairs might lead to
corrections in the regime where EB ≈ ℏωz, which go beyond
the two-body sector. Whether this effect has any influence on
the measured phase diagram still needs further experimental
and theoretical consideration. Initial steps in this direction
have been taken [56].
Our work constitutes a basis for future theoretical and

experimental studies of quantum gases in the quasi-2D
BEC-BCS crossover. The measured critical temperature
suggests the validity of BKT theory on the bosonic side.
Superfluidity and the algebraic decay of correlations below
the transition remain to be validated. Indeed, our ability to
extract the in situ momentum distribution with negligible
distortion offers direct access to the coherence properties of
the system. A first analysis of the trap averaged first order
correlation function, which we obtain by Fourier trans-
forming the pair momentum distribution, suggests algebrai-
cally decaying phase correlations below the critical
temperature. However, because of the inhomogeneity of
our system, a careful analysis is required to unambiguously
confirm the BKT nature of the observed transition.
Additionally, the equation of state can be extracted from
the density distribution in the trap. Finally, the exploration of
the dimensional crossover to 3D, in which an increased
Tc=TF is predicted [55], offers new opportunities to under-
stand mechanisms which lead to high critical temperatures.
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