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We report on the observation of negative differential conductivity (NDC) in a quantum transport device
for neutral atoms employing a multimode tunneling junction. The system is realized with a Bose-Einstein
condensate loaded in a one-dimensional optical lattice with high site occupancy. We induce an initial
difference in chemical potential at one site by local atom removal. The ensuing transport dynamics are
governed by the interplay between the tunneling coupling, the interaction energy, and intrinsic collisions,
which turn the coherent coupling into a hopping process. The resulting current-voltage characteristics
exhibit NDC, for which we identify atom number-dependent tunneling as a new microscopic mechanism.
Our study opens new ways for the future implementation and control of complex neutral atom quantum
circuits.
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Introduction.—Tunneling is a ubiquitous phenomenon
exploited in modern electronic transport and detection
devices [1–3] as well as in chemical and biological reactions
[4,5]. Recently, quantum transport phenomena have been
observed with ultracold atoms, such as the conductance in
mesoscopic channels [6] and its quantization [7], thermo-
electric transport [8], and the control of mobility [9]. The
conceptual simplicity in such systems allows for a thorough
investigation and understanding of the underlying micro-
scopic transport mechanism. Here, we observe negative
differential conductivity (NDC) [2] in a multimode tunnel-
ing junction for ultracold interacting atoms. Contrary to
other prominent implementations in single molecule junc-
tions [10], carbon nanotubes [11], and graphene transistors
[12], we demonstrate that NDC originates from a nonlinear,
atom number dependent tunneling coupling in combination
with fast collisional decoherence. Our many-body device
allows for the study of fundamental transport processes
influenced by local thermalization or incoherent environ-
ments and paves the way for implementations of more
complex atomtronic quantum circuits [13–15].
Tunneling transport in solids typically occurs when an

electron reservoir with chemical potential (or Fermi energy)
μ1 is separated by a tunneling barrier or a quantum well
from a second reservoir with chemical potential (or Fermi
energy) μ2. This model and extensions of it have been
introduced by Esaki and Tsu to calculate the conductance
of resonant tunneling diodes and has culminated in the
discovery of NDC [2], a phenomenon widely exploited in
electronic devices. Here, we give a proof-of-principle for
the appearance of NDC in a quantum transport device for
neutral atoms residing in an optical lattice. The minimum
instance of our experiment is depicted in Fig. 1. Two

particle reservoirs with chemical potential μ1 and μ2 are
separated by a tunneling barrier and coherently coupled
with strength J. Each subsystem contains many particles
and provides many spatial modes. Preparing an initial
nonequilibrium condition, Δμ ¼ μ1 − μ2 ≠ 0, we measure
the ensuing transport through the tunneling barrier.
The multimode character of each reservoir is responsible
for two distinct physical mechanisms, which govern the
tunneling transport: (i) the interaction energy between the
particles leads to a density dependent tunneling coupling
and (ii) collisions between particles in different modes
provide an intrinsic source of decoherence. Both mecha-
nisms together provide the conditions for observing NDC
with a steady-state dc current and demarcate the transport
dynamics from that of single-mode Josephson junctions
[16], where either oscillatory ac currents or pure self-
trapping are observed.

FIG. 1 (color online). System under investigation. Two reser-
voirs can exchange particles with coupling strength J through a
tunneling barrier. The particles in both sides can occupy many
spatial modes and have different chemical potentials.
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Experimental system.—We realize this model with a
Bose-Einstein condensate of 45 × 103 87Rb atoms in a one-
dimensional optical lattice with 547 nm lattice spacing.
The trap-frequencies in a lattice site are νρ ¼ 165 Hz and
νz ¼ 40–100 kHz. Each site contains a two-dimensional
Bose-Einstein condensate [17] withN0 ≈ 700 atoms and all
atoms reside in the lowest Bloch band. Employing a
scanning electron microscopy technique [18,19], we ini-
tially remove atoms from one site at the center in a deep
lattice where tunneling is absent [the fraction of remaining
atoms is about 5%–10%], thus, creating an imbalance in
chemical potential Δμ [Fig. 2(a)]. Lowering the lattice
height to different final values, we induce the transport in
the array. After variable evolution times, we probe the atom
number and the transverse density distribution in the central
site using the same electron microscopy technique. Even
though the central site is connected to two reservoir sites,
collisional decoherence ensures that the experimental
system is equivalent to the scheme depicted in Fig. 1.
Figure 2(b) shows the microscopic level structure of

the tunneling junction. The chemical potential of the 2D
condensate in a full site is much larger than the level spacing
in the radial direction and many spatial modes contribute
to the transport. In order to obey energy conservation, the
particles can only tunnel into radially excited states of

the central site. This goes along with a projection of the
radial wave function of the full site onto the available one
in the empty site, corresponding to a Franck-Condon factor
in the tunneling matrix element. We determine this factor
by measuring the radial density distribution of a full site,
extracting the modulus of the radial mean-field wave
function, jψ1ðρÞj ¼

ffiffiffiffiffiffiffiffiffi

nðρÞp

, and calculating the overlap
η ¼ jhψ1jψ2ij. Here, ψ2ðρÞ is chosen to be the nearest
available orbital state of a 2D harmonic oscillator in the
central site that leads to resonant tunneling. This results in an
effective tunneling coupling JeffðΔμÞ that depends on the
difference in chemical potential between the reservoir and
the central site. With increasing Δμ, the Franck-Condon
factor and, thus, the effective tunneling coupling get smaller.
For largeΔμ, corresponding to an almost empty central site,
Jeff is reduced by a factor of 10 with respect to the tunneling
coupling J between two full sites, which can be calculated
following [20].
Experimental results.—Figure 3(a) shows the experi-

mental results for different values of J. In all cases, the

(a)

(b)

FIG. 2 (color online). (a) Experimental setup: Two blue detuned
laser beams ð~kLÞ create a one-dimensional optical lattice in which
we load a Bose-Einstein condensate. Removing atoms from the
central site of this system leads to an out-of-equilibrium state as
an implementation of Fig. 1 (see text). (b) Sketch of the energy
level structure (not to scale). Particles of a full site with chemical
potential μ1 are resonant with higher radial states of the empty site
(indicated as dotted lines) in which they tunnel with a reduced
effective tunneling rate Jeff . Subsequently, the atoms thermalize
by collisional decoherence in the initially empty well.

(a)

(b) (c)

FIG. 3 (color online). Experimental results. (a) Refilling
dynamics for three different tunneling couplings. The solid lines
are the prediction of our effective model [see Eq. (3) below].
(b) Negative differential conductivity. The experimental points
are extracted from the data set with J=ℏ ¼ 100 s−1. After a linear
initial rise (red line), the current drops for an increasing
imbalance in chemical potential. The dashed line indicates the
critical current at which NDC sets in. (c) Critical current for
NDC versus coupling strength. Evaluating the critical current
for different tunneling couplings J, we find a power law Jα,
with α ¼ 1.8ð2Þ.
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population in the central site smoothly recovers its equi-
librium value. The absence of oscillations on top of the
refilling curves is a first indicator for the presence of
collisional decoherence in the central site. This is in
contrast to the Josephson dynamics between two coupled
modes [16], where coherent tunneling leads to oscillations
of the population. The density dependent tunneling matrix
element directly affects the refilling dynamics. For lower
values of J, the refilling starts visibly with a lower rate and
gets faster over time, leading to an overall “s-shaped” form.
This behavior can now be converted into a current-

voltage relation: since a difference in chemical potential
drives an atomic current through the tunneling junction,
it can be identified with an applied voltage. The atomic
current is then the equivalent to an electric current. This
analogy has been previously applied to characterize the
transport of fermionic atoms through mesoscopic channels
[6,7]. As we will show below, the atomic collisions within
the central site guarantee an adiabatic time evolution of the
system. Thus, every point of the refilling curve [Fig. 3(a)]
represents a steady state and the corresponding tunneling
current is obtained by taking the derivative of the refilling
curve. The corresponding difference in chemical potential
Δμ, which represents the applied voltage, is calculated
from the population imbalance at a given point [21]. The
resulting current-voltage characteristics for the data set
with J=ℏ ¼ 100 s−1 are shown in Fig. 3(b). The “s shape”
translates into a nonmonotonic dependence. For small Δμ,
the current increases linearly [see solid line in Fig. 3(b)],
which is characteristic for an Ohmic conductivity. But then
it bends over, and the current is strongly suppressed for
large differences in the chemical potential. These character-
istics are known as negative differential conductivity
[2,10–12]. It is technically exploited, e.g., in Gunn diodes
for the generation of microwave radiation. In a tunnel diode
as in most other devices, NDC occurs due to the interplay
between the Fermi energy of the carriers on one side of the
junction and the density of available hole states on the other
side. The latter can be shifted out of resonance or can be
depleted by an applied voltage. In superlattice structures,
NDC is the result from a competition between localization
length and collision rate. Here, however, the microscopic
origin of NDC is different: there is neither a detuning nor a
change of localization. Instead, the NDC has its origin in a
nonlinear tunneling coupling which depends on the applied
voltage (or atom number difference). A similar phenom-
enology is known from correlated hopping [22].
To further characterize this behavior in our system, we

extract the critical current Icrit at which NDC sets in for
different tunneling couplings J [Fig. 3(c)]. By fitting a
power law, we find Icrit ∝ Jα with α ¼ 1.8ð2Þ. Tuning the
lattice height is, therefore, a knob to adjust the properties of
the NDC contact.
The interaction between the atoms also affects the

thermodynamic properties of the transport process. Upon

tunneling, the interaction energy (given by the chemical
potential μ0 of a full site) is converted into kinetic and
potential energy, being thermalized after a few collisions.
The equilibrium collision rate can be calculated from stan-
dard 2D theory [23], and yields values between 150 s−1 and
200 s−1. However, the collision rate for an atom that tunnels
into a radially excited state is even higher, as many other
atoms initially populate the same state, therefore, being
efficiently coupled to neighboring states on a millisecond
time scale. Thermal equilibrium is, therefore, rapidly estab-
lished. The depletion of the condensate in the full site is
always balanced by the adjacent reservoir sites and all atoms
which tunnel into the central site have the same energy μ0.
We can, therefore, apply the equipartition theorem to the
2D harmonic oscillator potential in the central site and find
μ0 ¼ 2kBT for the temperature at the very first part of the
dynamics. The prediction of 34(4) nK is in excellent agree-
ment with our experimental finding 36(2) nK, extracted
from a Gaussian fit to the radial density distribution (Fig. 4).
This is an extreme manifestation of the Joule Thompson
effect in the quantum regime [24], where the interaction
energy is converted into thermal energy. For larger filling,
the atoms condense, and thewidth of the density distribution
gets smaller. Note that this locally thermalized state occurs
even for a global system temperature of T ¼ 0.
Theoretical model.—The role of decoherence in trans-

port processes has been extensively discussed in the
literature [25,26]. Its implication for our experiment can
be understood from a microscopic description of the
tunneling transport. We start from the master equation in
Lindblad form [27–31] for the many-body density matrix ρ̂

iℏ∂tρ̂ ¼ ½Ĥeff ; ρ̂� þ iℏLρ̂; ð1Þ
where we assume the following dephasing mechanism for
the Liouvillian:

FIG. 4 (color online). Normalized radial density distribution in
the central lattice site for the refilling dynamics at J=ℏ ¼ 230 s−1.
After 6 ms (blue dots, 220 atoms), the distribution is governed by
thermal energy, and we find a temperature of T ¼ 36ð2Þ nK. The
equilibrium state (red triangles, 600 atoms), which is reached
after 400 ms, is dominated by interaction energy and its width
gets smaller. Solid lines are Gaussian fits with horizontal bars
indicating their 2σ width.
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Lρ̂ ¼ Γdecð2n̂cρ̂n̂†c − n̂2cρ̂ − ρ̂n̂2cÞ: ð2Þ

Here, the number operator n̂c acts solely within the central
site, where many quantum states in the radial direction
are accessible and the atoms can scatter between them. As
the available many-body Hilbert space is huge and as the
collision rate is much higher than the coherent coupling, we
assume thermodynamic equilibrium. It has recently been
shown [32] that, in such a situation, the collisional rate in a
thermal ensemble of particles is equal to the decoherence
rate Γdec.
In principle, we would have to solve the full many-body

problem with several radial modes in each lattice site. Since
our experimental densities in the initially filled wells are
rather large with a filling factor of about 700, such a micro-
scopic approach would soon become intractable. The large
filling, together with the relatively weak two-body scattering
for Rb, should guarantee the validity of a mean-field app-
roach, which we are using. Then, the effective Hamiltonian
mimics the many-particle behavior of the system with the
help of the effective tunnel rate JeffðΔμÞ. An exact calcu-
lation of the effective tunneling coupling is only possible for
a full site and an empty site. In order to describe the behavior
of JeffðΔμÞ in a simplified model, we use a linear inter-
polation between the two values J and ηJ, see the definition
of the Franck-Condon factor η above and [33].
The coupling between all other sites is given by the

unchanged tunneling matrix element J since they always
have approximately the same filling. Putting all this
together, we numerically solve the following equation
for the single-particle reduced density matrix σn;m ¼
trðâ†nâmρ̂Þ [29–31,34], with the creation and annihilation
operators â†n and âm acting on site n and m, respectively,

_σn;m ¼ −
i
ℏ
trðâ†nâm½Ĥeff ; ρ̂� þ â†nâmLρ̂Þ

¼ i
ℏ
J0ðσn;m−1 þ σn;mþ1 − σn−1;m − σnþ1;mÞ

− Γdecð1 − δnc;mÞσnc;m − Γdecð1 − δn;ncÞσn;nc ; ð3Þ
where J0 ¼ JeffðΔμÞ for any index corresponding to the
central site nc and J0 ¼ J, otherwise. Without the dephas-
ing term, Eq. (3) would be equivalent to a discrete nonlinear
Schrödinger equation for the wave function vector
fψng by the identification σn;m ¼ψ�

nψm and Δμ¼AN1=2
0 ×

ðσ1=2nc�1;nc�1−σ
1=2
nc;ncÞ≈A=2·ΔN, where A¼ðgmω2

ρ=πÞ1=2.
Here, g is the 2D interaction strength [17], m the mass
of the atom, and ωρ the radial oscillation frequency. The
diagonal element of the single-particle density matrix
corresponding to the central site nc is then compared with
our experimental data, leaving the decoherence rate Γdec
as a free parameter. The results are shown as solid lines
in Fig. 3(a).
Role of decoherence.—This simplified model describes

our data very well for all tunneling couplings. We find a

decoherence rate of about 600 s−1 independent of the
tunneling coupling J. Its magnitude is in accordance with
the above estimated thermal collision rate. We, therefore,
identify collisions as the dominant source of decoherence.
As the collisions happen much faster than the transport
process itself, thermal equilibrium is always established,
and indeed, we measure a dc current as if the system was in
a steady state at a given time. The decoherence rate is also
larger than the tunneling coupling (J=ℏ < 400 s−1) and the
transport is dominantly incoherent.
The importance of decoherence in our study also

manifests itself in the appearance of the quantum Zeno
effect. It has been predicted that the effective hopping
rate in such a system scales as τ−1eff ∝ J2=Γdec [28,29,35].
Analyzing the refilling time, which we define as the time
constant where the filling exceeds ∼67%, in dependence of
the tunneling coupling for the constant Γdec [Fig. 5(a)], we
readily recover the quadratic power law: τ−1eff ∝ Jα with
α ¼ 1.9ð1Þ. In order to vary the decoherence rate Γdec, we
change the overall atom number, keeping the lattice depth
constant (J=ℏ ¼ 100 s−1). For Γdec > J=ℏ, we find that
τeff ∝ Γdec [Fig. 5(b)]. Given our effective single-particle
model, this is in accordance with the seminal results of
Caldeira and Leggett [25]. Both findings together verify the
predicted dependence: τ−1eff ∝ J2=Γdec.
Conclusions.—The observation of NDC in the transport

of ultracold quantum gases bears great potential for future
implementations of interaction controlled atomic circuits
[14,15,36–39]. It can also serve as an alternative mecha-
nism for the observation of bistability and related non-
equilibrium phenomena. Provided the two reservoirs have
different spatial geometries, the transport process might
become even asymmetric as a function of Δμ. Such an
asymmetry translates into a left-right transport imbalance
and might provide a possible strategy to build a diode for
neutral matter currents. On a more fundamental level, our

(a) (b)

FIG. 5 (color online). Behavior of the time scale for different
settings. (a) Refilling time versus tunneling coupling for a
constant decoherence rate. We fit a power law with an exponent
of α ¼ 1.9ð1Þ. (b) Refilling time versus decoherence rate:
manifestation of the quantum Zeno effect. τeff scales linearly
with Γdec (red line).
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approach to nonequilibrium dynamics, following a quench
in the density, allows for an in-depth study and under-
standing of local thermalization processes and many-body
transport phenomena in incoherent environments.
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