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The growth of an Al-Ni-Co decagonal quasicrystal was observed by in situ, high-temperature, high-
resolution transmission electron microscopy. The tiling patterns extracted from a series of high-resolution
transmission electron microscopy images were analyzed on the basis of the high-dimensional description of
quasicrystalline structures. The analyses indicated that the growth proceeded with frequent error-and-repair
processes. The final, grown structure showed nearly perfect quasicrystalline order. Our observations
suggest that the repair process by phason relaxation, rather than local growth rule, plays an essential role in
the construction of ideal quasicrystalline order in real materials.
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Quasicrystals possess a long-range translational order
named quasiperiodicity [1], in which the structure cannot
be described simply by the repetition of a unit cell, as it
could for conventional crystals. This fact raises the question
of how quasicrystals can grow, in other words, how the atoms
can arrange themselves to construct such a peculiar order.
While crystals can grow simply by copying a unit cell via
local atomic interactions, the growth of quasicrystals with
quasiperiodic long-range order appears to require the atoms
adhering to the growth front to obtain nonlocal structural
information, which is physically implausible. This problem
has attracted much attention ever since the first discovery of
a quasicrystal in 1984 [2], and several theoretical growth
models, which primarily apply to decagonal and icosahedral
quasicrystals, have been proposed [3–10].
First, models have been created to illustrate the random

aggregation of symmetric decagonal or icosahedral clus-
ters, with the assumption that the clusters join together
under some constraint to maintain orientational order [3–6].
Though these types of models show better translational
correlations than one might expect, they are still not
sufficient to explain the correlations observed experimen-
tally. Elser et al. [6,7] have shown that the degree of order
is greatly improved in their cluster-aggregating models
by introducing an annealing region in the vicinity of
the growth front.
Onoda et al. [8] have reported the discovery of an

algorithm for growing a perfect 2D Penrose tiling by
“local” rules, which is apparently inconsistent with
Penrose’s theorem [11], which states that Penrose tiling
cannot be grown by local rules. This discrepancy can be
resolved in view of different notions of locality in these
rules [12]. Jeong [9] has extended Onoda’s algorithm for
the growth of a perfect 3D decagonal quasicrystal that
consists of a periodic stacking of 2D Penrose tilings. Olami
[10] has proposed a growth model for a pentagonal
quasicrystalline tiling by local rules, generating highly

ordered quasicrystals with limited disorder in a tile arrange-
ment, i.e., with limited phason disorder.
The problem of quasicrystal growth has been theoreti-

cally discussed in several studies, such as those mentioned
above. In the present study, we performed in situ, high-
temperature, high-resolution transmission electron micros-
copy (HRTEM) observations of the growth process of a
quasicrystal.
An alloy with the composition Al70.8Ni19.7Co9.5 was

prepared from the elemental constituents by arc melting
under an Ar atmosphere. The alloy was melt-spun using a
single roller quenching apparatus. X-ray diffraction mea-
surements showed that the melt-spun specimens consisted
entirely of the decagonal quasicrystalline phase. The spec-
imens were thinned by ion milling. Then, electron diffraction
and transmission electron microscopy experiments, includ-
ing in situ high-temperature HRTEM observations, were
carried out using a 200-kV JEOL JEM-2010 F microscope
equipped with a double-tilting heating stage. It was shown
that the sample was polygrained with the basic Ni-type
decagonal phase, which is known to have the best structural
quality of all the decagonal quasicrystals [13]. Before
heating, the grain size was typically 1.5 μm. The sample
was heated to 1183 K at a heating rate of approximately
20 K=min, and it was held at this temperature. The grain
growth process was observed by HRTEM at this temper-
ature. The movie was recorded on a digital video disk at a
rate of 30 frames=s. A series of images was extracted from
the movie and analyzed. Details of the image-analysis
procedure are given in the Supplemental Material [14].
Figure 1(a) shows an example of a HRTEM image taken

at 1183 K, in which two grains, designated as A and B, are
separated by a grain boundary indicated by the red curve.
Electron diffraction experiments showed that both grains
were of the decagonal phase but with different orientations.
Any symmetry axes of grain B were far from the incident
beam direction, resulting in a plain bright image with no
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contrast. On the other hand, the tenfold axis of grain A
coincided with the incident beam direction, resulting in
an arrangement of white spots on a black background.
The experimental conditions for obtaining this sort of
image have been described in our previous papers
[15,16]. Here, each white spot is considered to represent
the position of a columnar atomic cluster constituting the
decagonal quasicrystalline structure.
In Fig. 1(b), a tiling pattern is constructed by connecting

the white spots in the image of Fig. 1(a) using the basis
vectors pi ¼ a(cosð2πi=5Þ; sinð2πi=5Þ) (i ¼ 0; ...; 4) with
a ≈ 2.0 nm. This pattern resembles the pentagonal Penrose
tiling that is one of the typical decagonal quasicrystalline
tilings. Having selected a vertex in the tiling pattern as the
origin, we can represent every vertex position r∥ as a linear
combination of pi (i ¼ 0; ...; 4) with integer coefficients,
i.e., r∥ ¼

P
4
i¼0 nipi. To ensure a one-to-one correspon-

dence between r∥ and (n0;…; n4), we imposed the con-
dition that (n0;…; n4) satisfy

P
4
i¼0 ni ¼ 0;�1, or �2. The

procedure of determining a five-dimensional lattice point
(n0;…; n4) from r∥ using the above relations is called
“lifting.” Projection of the lifted (n0;…; n4) onto the “perp
space”, which is defined as the space perpendicular to the
real space, was performed by calculating r⊥ ¼ P

4
i¼0 niqi,

where qi are defined as qi ¼ pð2imod 5Þ. For ideal decagonal
quasicrystalline tilings, the points fr⊥g are distributed
densely within a bounded domain. The points fr⊥g deduced
from the points fr∥g in Fig. 1(b) are shown in Fig. 1(c). The
decagon indicates the domain for the pentagonal Penrose
tiling. The points fr⊥g are mostly accommodated in the
domain, indicating that the tiling pattern in Fig. 1(b) is close
to an ideal quasicrystalline tiling.
We observed the process in which grain A in Fig. 1(a)

grew in the direction indicated by an arrow in the figure
by eating grain B. The movie of this process is presented in

the Supplemental Material [14]. Figures 2(a)–2(d) show the
images at t ¼ 2.1, 4.9, 11.3, and 13.6 s, respectively, where
the time was measured from the moment at which the
image of Fig. 1(a) was taken. The results of the analyses of
the image series extracted from the movie, including those
in Figs. 2(a)–2(d), are presented below. Our main findings
are as follows. During the growth process, the quasicrys-
talline order was not always maintained; the growth
proceeded with frequent error-and-repair.
Figures 3(a)–3(c) present an example of such an error-

and-repair process observed in this experiment. In the left
column, the vertices of the tilings extracted from the images
at t ¼ 4.9, 6.1, and 6.6 s are presented, and the lattice
planes parallel to p1 are drawn. These lattice planes are
perpendicular to the growth direction. The corresponding

FIG. 1 (color online). (a) An example of a HRTEM image taken at 1183 K, in which two grains, designated as A and B, are separated
by the grain boundary indicated by the red curve. The growth direction of grain A is indicated by the arrow. For details of the image
processing, see the Supplemental Material [14]. (b) The tiling pattern constructed by connecting the white spots in image (a) using the
basis vectors pi (i ¼ 0; ...; 4). (c) The perp-space point distribution deduced from the tiling pattern in (b). The decagon indicates the
domain for the pentagonal Penrose tiling.

FIG. 2 (color online). (a)–(d) The HRTEM images at t ¼ 2.1,
4.9, 11.3, and 13.6 s, respectively, where the time was measured
from the moment at which the image in Fig. 1(a) was taken.
The positions of the growth front at t ¼ 0, 2.1, 4.9, 11.3, and
13.6 s are indicated by red curves in the figures.
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images are presented in the Supplemental Material [14].
In Fig. 3(a), the lattice planes on which many vertices lie
consist mostly of two different lattice spacings: long (L)
and short (S) ones, the ratio of which is the golden mean,
τ ¼ ð1þ ffiffiffi

5
p Þ=2. In the right column of Fig. 3(a), the

arrangement of the lattice planes is analyzed. The position t
of a lattice plane can be indexed by integers ðm1; m2Þ
as t ¼ m1u1 þm2u2, using the two vectors u1 ¼ ðp3 −
p4Þ=2 and u2 ¼ ðp2 − p0Þ=2. Here, u1 and u2 are parallel
to the growth direction, and ju1j ¼ S and ju2j ¼ L, as
shown in Fig. 3(a). The vertex of (n0;…; n4) lies on the
lattice plane of ðm1; m2Þ ¼ ðn3 − n4; n2 − n0Þ. In the right
column of Fig. 3(a), the lattice planes ðm1; m2Þ in the tiling
structure are mapped to T ¼ m1e1 þm2e2 on a 2D lattice
spanned by e1 and e2, where the size of the circle is
proportional to the number of vertices on the lattice plane.
The L-S sequence in the left column corresponds to the
stairlike structure in the right column. If the tiling has a
perfect decagonal quasicrystalline order, the L-S sequence
should be a one-dimensional Fibonacci lattice. This behav-
ior is demonstrated for the pentagonal Penrose tiling in the
Supplemental Material [14]. The stairlike structure in
Fig. 3(a) is accommodated within the green strip, which
has a slope τ and width je⊥1 j þ je⊥2 j, where the superscript⊥ denotes the projection of the vector onto a line

perpendicular to the strip direction. This fact indicates that
the L-S sequence in Fig. 3(a) corresponds to a part of a
Fibonacci lattice.
The stairlike structure in Fig. 3(a) indicates that L should

be added to the last lattice plane (α) to keep the order.
However, S has incorrectly been added at 6.1 s in Fig. 3(b).
The new lattice plane is located well below the green strip
in the 2Dmap. This incorrect attachment of the lattice plane
induced additional tile rearrangement in the already-grown
region. As a result, we could draw a bent strip to accom-
modate the 2D points of the lattice planes, as in the right-
hand figure in Fig. 3(b). The bent strip indicates the
introduction of phason strain. Subsequently, this phason
strain had relaxed almost completely by t ¼ 6.6 s, as shown
in Fig. 3(c).
The degree of order in the lattice plane arrangement was

evaluated by the deviation Δ of the weighted average of
T⊥ (the projection of T onto the perp space) from the center
of the green strip. The time dependence of the deviation is
shown in Fig. 4(a). Within the 15 s observation, six error-
and-repair events are evident, as shown with the shaded
time regions. The error-and-repair event presented in Fig. 3
corresponds to the second one in Fig. 4(a). In the present

FIG. 4 (color online). (a) Time dependence of the degree of
order in the lattice plane arrangement, where Δ ¼ 0 corresponds
to the ideal order. We find that Δ departs from and returns to zero,
which corresponds to an error-and-repair event. Six such events
are identifiable in the shaded time regions. (b)–(d) 2D maps of the
lattice planes and perp-space point distributions at t ¼ 0, 6.4, and
14.9 s, respectively, showing that the overall growth proceeds
while maintaining a nearly perfect quasicrystalline order.

FIG. 3 (color online). An example of an error-and-repair
process. In the left column, the vertices of the tilings extracted
from the images at t ¼ 4.9 (a), 6.1 (b), and 6.6 s (c) are presented,
and the lattice planes parallel to p1 are drawn. The lattice planes on
which many vertices lie consist mostly of two different lattice
spacings, L and S. In the right column, 2D maps of the lattice
planes are shown (see text).
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observation at 1183 K, the repair processes typically took
1 s, which should correspond to the phason-strain relaxation
time. We observed the growth at various temperatures and
found that the relaxation time was strongly temperature
dependent. For example, at 1123 K, the typical relaxation
time was 10–20 s, where the repair process was observed
after several lattice planes had grown incorrectly.
It should be noted that all six events in Fig. 4(a) show the

same direction of deviation: the peaks of Δ are all on
the minus side. This result indicates that the error always
occurred in such a way that S was added when L had been
expected. This behavior may be due to the fact that, as the
growth front proceeds from the last lattice plane, S becomes
possible to be generated before L becomes possible.
Because the introduction of error is always followed by

the repair process, the overall growth appeared to proceed
while maintaining a nearly perfect quasicrystalline order.
In Figs. 4(b)–4(d), 2D maps of the lattice plane arrange-
ments extracted from the images at t ¼ 0, 6.4, and 14.9 s
are presented, together with the 2D distributions of fr⊥g.
The corresponding images and vertices of the tilings are
presented in the Supplemental Material [14]. We observed
growth of approximately 18.3 nm during the 14.9 s time
period. The stairlike structures of L and S are accommo-
dated within a strip with slope τ and width je⊥1 j þ je⊥2 j,
indicating an ideal order.
In early years, all known quasicrystalline phases were

metastable and could be obtained only by rapid quenching.
These phases show considerable deviations from the ideal
quasicrystalline order; they generally show diffraction peak
widths that increase linearlywith jG⊥j , themagnitude of the
phason momentum. This behavior indicates that the root-
mean-square phason fluctuations grow linearly with system
size [17,18]. The models of the random aggregation of
clusters generally show more rapid increases of peak width
with jG⊥j [5]. However, by introducing an annealing region
in the vicinity of the growth front, some cluster aggregating
models have been shown to exhibit a linear increase of peak
width with jG⊥j [6,7], in agreement with experiments.
Later, “ideal” quasicrystals with virtually no phason

disorder were found to form in many alloy systems such as
Al-Cu-Fe, Al-Cu-Ru, and Al-Pd-Mn for icosahedral quasi-
crystal, and Al-Ni-Co for decagonal quasicrystal. Some
ideal growth models, such as those by Onoda et al. [8],
Jeong [9], and Olami [10], can explain the formation of
such ideal quasicrystals. These models incorporate no
structural relaxation either during or after the growth;
instead, the growth proceeds in a manner such that the
quasicrystalline order is always maintained. This is quali-
tatively different from what we observed in the growth of
the Al-Ni-Co decagonal quasicrystal. In our observations,
incorrect tile attachments, i.e., introduction of phason
defects occurred frequently during the growth, suggesting
that no strict local growth rule is at work to force the
construction of ideal quasicrystalline order. Frequent

introduction of errors (phason defects) during growth also
indicates that the interactions among tiles, which should
arise from atomic interactions, are local: nonlocal inter-
actions would enable the growth of quasicrystal without
errors. The phason defects, which are inevitably introduced
during growth because of lack of nonlocal interactions,
should increase phason elastic free energy, which can be
relaxed through tile rearrangement by tile flips. This has
actually been observed in our experiments. Thus, our
observations demonstrate that this repair process by phason
relaxation, rather than a local growth rule, plays an essential
role in the construction of ideal quasicrystalline order in
real materials. Here, local interactions appear to suffice to
construct ideal quasicrystalline order through a phason
relaxation process, as suggested by recent Monte Carlo [19]
and molecular dynamics [20] simulations, in which qua-
sicrystals are formed as thermodynamical equilibrium
states only with local interactions.
It should be noted that even in the above-mentioned alloy

systems, in which ideal quasicrystals form, rapid quenching
leads only to the formation of disordered quasicrystals.
Sufficient annealing after the solidification process is
necessary to obtain ideal quasicrystals. Such ideal quasi-
crystals are also formed by sufficiently slow solidification
processes, such as the Bridgman or Czochralski methods
used to produce single-grain samples, in which phason
relaxation should occur during the growth. The growth
process observed in our experiment was even slower than in
these methods, and therefore there was sufficient time for
phason relaxation. In any case, repair by phason relaxation
during or after growth should be involved to construct ideal
quasicrystalline order in real materials.
In conclusion, we observed the growth process of an

Al-Ni-Co decagonal quasicrystal by in situ high-temperature
HRTEM. The tiling patterns extracted from a series of
HRTEM images were analyzed on the basis of the high-
dimensional description of quasicrystalline structures. The
analyses indicated that the growth proceeded with frequent
error-and-repair processes. The final, grown structure
showed nearly perfect quasicrystalline order. Our observa-
tions suggest that repair by phason relaxation, rather than a
local growth rule, plays an essential role in the construction
of ideal quasicrystalline order in real materials. This is
qualitatively different from the ideal growth models pre-
viously proposed.
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