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We perform a manifestly gauge-independent analysis of the vacuum stability in the standard model
including two-loop matching, three-loop renormalization group evolution, and pure QCD corrections
through four loops. All these ingredients are exact, except that light-fermion masses are neglected. We in
turn apply the criterion of nullifying the Higgs self-coupling and its beta function in the modified minimal-
subtraction scheme and a recently proposed consistent method for determining the true minimum of the
effective Higgs potential that also avoids gauge dependence. Exploiting our knowledge of the Higgs-boson
mass, we derive an upper bound on the pole mass of the top quark by requiring that the standard model be
stable all the way up to the Planck mass scale and conservatively estimate the theoretical uncertainty. This
bound is compatible with the Monte Carlo mass quoted by the Particle Data Group at the 1.3σ level.
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The standard model (SM) of elementary particle physics
has been enormously consolidated by the discovery [1] at the
CERN Large Hadron Collider of a new weak neutral
resonance that, within the present experimental uncertainty,
shares the spin (J), parity (P), and charge-conjugation (C)
quantum numbers JPC ¼ 0þþ and the coupling strengths
with the SM Higgs boson H, in the absence of convincing
signals of newphysics beyond the SM.Moreover, itsmass of
ð125.7� 0.4Þ GeV [2] falls well inside the MH range
predicted within the SM through global analyses of electro-
weak (EW) precision data [2]. Besides completing the SM
particle multiplet and confirming the Higgs mechanism of
mass generation via the spontaneous breaking of the EW
symmetry proposed by Englert, Higgs (The Nobel Prize in
Physics, 2013), and Brout, this groundbreaking discovery
also has fundamental cosmological consequences by
allowing conclusions regarding the fate of the Universe
via the analysis of the vacuum stability [3]. In fact, owing to
an intriguing conspiracy of the SM particle masses, chances
are that the Higgs potential develops a second minimum, as
deep as the one corresponding to the vacuum with expect-
ationvalue (VEV) v ¼ 2−1=4G−1=2

F ¼ 246 GeV inwhichwe
live, at a field value of the order of the Planck mass MP ¼
1.22 × 1019 GeV [4,5]. This would imply that the SM be
stable all theway up to the energy scalewhere the unification
with gravity is expected to take place anyways, whichwould
diminish the necessity for grand unified theories at lower
scales. EW symmetry breakingmight thus be determined by
Planck-scale physics [5], and the existence of a relationship
betweenMP and SMparametersmight signify a reduction of
fundamental couplings. Of course, experimental facts that
the SM fails to explain, such as the smallness of the neutrino
masses, the strongCP problem, the existence of darkmatter,
and the baryon asymmetry in the Universe, would then still
call for an extension.

Obviously, the ultimate answer to the existential question
whether our vacuum is stable or not crucially depends on
the quality of the theoretical analysis as for both conceptual
rigor and high precision, and it is the goal of this Letter to
significantly push the state of the art by optimally exploit-
ing information that has become available just recently. The
technical procedure is as follows. The set of running
coupling constants, including the SUð2ÞI, Uð1ÞY , and
SUð3Þc gauge couplings gðμÞ, g0ðμÞ, and gsðμÞ, respec-
tively, the Higgs self-coupling λðμÞ, and the Yukawa
couplings yfðμÞ, of the full SM are evolved in the
renormalization scale μ from μthr ¼ OðvÞ to μcri ¼
OðMPÞ using the renormalization group (RG) equations.
The beta functions appearing therein take a simple poly-
nomial form in the modified minimal-subtraction (MS)
scheme of dimensional regularization. They are fully
known through three loops [6] in the approximation of
neglecting the Yukawa couplings of the first- and second-
generation fermions, and the ones of gs [7] and yq [8] also
at the four-loop order Oðα4sÞ, the latter being given by the
quark mass anomalous dimension. The initial conditions at
μ ¼ μthr are evaluated from the relevant constants of nature,
including Sommerfeld’s fine-structure constant αTh defined
in Thomson scattering (or, alternatively, Fermi’s constant
GF), the strong-coupling constant αð5Þs ðMZÞ at its reference
point in QCD with nf ¼ 5 active quark flavors, and the
physical particle masses Mi (i ¼ W;Z;H; f) defined via
the propagator poles, taking into account threshold correc-
tions [9], which are fully known through two loops
[5,10–14] and, for gs and yq, also at Oðα3sÞ [15,16] and
even at Oðα4sÞ [17,18]. Although self-consistency requires
that n-loop evolution is combined with ðn − 1Þ-loop
matching, we, nevertheless, include the additional infor-
mation [17,18] in our default predictions. There are two
approaches to the threshold corrections in the literature that
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differ in the definition of the MS VEV vðμÞ. In the first one
[10,11], vðμÞ is fixed to be the minimum of the effective
Higgs potential VeffðHÞ in the Landau gauge and is thus
gauge dependent [19]. A solution to this problem has
recently been proposed in Ref. [20]. In the second approach
[5,12–14], the adjustment of the VEV is only done for the

bare theory, yielding v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðm0
ΦÞ2=λ0

q

, with mΦ being

the mass of the complex scalar doublet Φ, or, equivalently,

v0 ¼ 2m0
W

e0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
�

m0
W

m0
Z

�

2
s

ð1Þ

in terms of basic parameters of the broken phase [9]. The
linear term in the bare Higgs potential is then quenched and
cannot serve as a tadpole counterterm, so that the tadpole
contributions, which carry gauge dependence, need to be
properly included order by order [9]. Upon MS renorm-
alization, taking Eq. (1) with the superscripts 0 dropped to
be exact, vðμÞ and all the basic parameters, including
λðμÞ, are manifestly gauge independent to all orders.
Consequently, the twofold vacuum stability condition [5],

λðμcriÞ ¼ βλðμcriÞ ¼ 0; ð2Þ
which fixes a second minimum that is degenerate with the
first one, has gauge-independent solutions for the critical
ultrahigh scale μcri and one free basic parameter, which we
take to beMcri

t , the upper bound on the top-quark pole mass
Mt, which is much less precisely known than MH [2]. For
comparisons with the literature, we also determine the MH

lower bound Mcri
H sloppily using as input the mass param-

eterMMC
t [2] that is extracted from experimental data using

Monte Carlo event generators merely equipped with lead-
ing-order (LO) hard-scattering matrix elements. The results
for μcri obtained together with Mcri

t and Mcri
H are denoted as

μcrit and μcriH , respectively. While the criticality condition in
Eq. (2) carries a very simple physical meaning and is
straightforward to solve numerically, it is slightly scheme
dependent. To assess this scheme dependence, we compare
the results for μcrii and Mcri

i with i ¼ t; H with those
obtained applying the consistent approach of Ref. [20],
in which VeffðHÞ is reorganized in powers of ℏ, so that its
expansion coefficients are gauge independent at its extrema
[21]. Specifically, this amounts to solving

λ ¼ 1

256π2

�

ðg2 þ g02Þ2
�

1 − 3 ln
g2 þ g02

4

�

þ 2g04
�

1 − 3 ln
g02

4

�

− 48y4t

�

1 − ln
y2t
4

��

; ð3Þ

which follows from dVLO
eff ð ~μcriÞ=dH ¼ 0, for the minimum

H ¼ ~μcri of VLO
eff ðHÞ and requiring that, at next-to-leading

order (NLO), VNLO
min ¼ VLO

eff ð ~μcriÞ þ VNLO
eff ð~μcriÞ ≥ 0 for

Mt ≤ ~Mcri
t or MH ≥ ~Mcri

H , which is conveniently achieved
in the Landau gauge [11].
We adopt the input values GF¼1.1663787ð6Þ×

10−5GeV−2, αð5Þs ðMZÞ¼0.1185ð6Þ, MW¼80.385ð15ÞGeV,
MZ ¼ 91.1876ð21Þ GeV, MH ¼ 125.7ð4Þ GeV, MMC

t ¼
173.21ð87Þ GeV, and Mb ¼ 4.78ð6Þ GeV from Ref. [2],

evolve αð5Þs ðμÞ from μ ¼ MZ to the matching scale μthr ¼
ξMMC

t in the nf ¼ 5 effective theory using coupled QCD ×
QED beta functions through four loops in QCD [7] and three
loops inQED[22], andevaluate there theMS couplingsof the full
SM from

g2ðμÞ ¼ 25=2GFM2
W ½1þ δWðμÞ�;

g2ðμÞ þ g02ðμÞ ¼ 25=2GFM2
Z½1þ δZðμÞ�;

λðμÞ ¼ 2−1=2GFM2
H½1þ δHðμÞ�;

yfðμÞ ¼ 23=4G1=2
F Mf½1þ δfðμÞ�;

g2sðμÞ ¼ 4παð5Þs ðμÞ½1þ δαsðμÞ�; ð4Þ

including the appropriate terms ofOðαnÞ with n ¼ 1; 2 [12,14],
OðααsÞ [5,12–14], andOðαns Þwith n ¼ 1; 2; 3; 4 [15–18]. The
threshold corrections δiðμÞ in Eq. (4) are expressed in terms of
the MS couplings αðμÞ and αsðμÞ, and the pole massesMi. To
avoid the theoretical uncertainty due to the hadronic contributions
to the relationship betweenαðμÞ andαTh [2], we replace the latter
by GF in the set of basic parameters by extracting αðμÞ self-
consistently from the exact relationship 1=½4παðμÞ� ¼
1=g2ðμÞ þ 1=g02ðμÞ [14]. We stress that the MS couplings in
Eq. (4) are manifestly gauge independent and, thanks to partial
tadpolecancellations, also finite in the limitMH → 0 [12,14].The
pole masses Mt and Mb are subject to renormalon ambiguities
of OðΛQCDÞ, which, for Mt, are still small against the exper-
imental error [2] and, for Mb, are inconsequential because of
the smallness of ybðμÞ. The use of MS masses mqðμÞ would
avoid renormalon ambiguities at the expense of introducing
unscreened tadpole contributions to restore gauge independence
[9], which coincidentally reduce the scheme dependence of
mtðμÞ [23], but spoil the perturbative expansion for mbðμÞ
[12]. For completeness, we also study theMS mass parameter of
the Higgs potential, m2ðμÞ ¼ −2m2

ΦðμÞ ¼ 2v2ðμÞλðμÞ, using

v2ðμÞ ¼ 2−1=2G−1
F ½1þ Δr̄ðμÞ�; ð5Þ

whereΔr̄ðμÞ toOðαnÞwithn ¼ 1; 2 andOðααsÞmaybe found
in Ref. [14]. Δr̄ðμÞ is gauge independent, but diverges for
MH → 0 due to unscreened tadpole contributions. We estimate
the theoreticaluncertainties in theMSparameters forξ ¼ 1 due to
unknown higher-order corrections by considering both scale
variations and truncation errors. In the first case, we in turn put
ξ ¼ 1=2 and2 inEq. (4), return toξ ¼ 1 using theRGequations,
and select the larger one of the two deviations thus generated. In
the second case, we find the full set ofMS parameters for ξ ¼ 1,
including besides those in Eq. (4) also miðμÞ with
i ¼ W;Z;H; f andvðμÞ, by self-consistently solving the system
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of equations that express GF and Mi entirely in terms of these
parameters, so that unscreened tadpole contributions have to
cancel numerically. We cast our results for x ¼ g; g0; gs; yt; yb;
λ; m in the form

xðμÞ ¼ x0 þ Δxαs
αð5Þs ðMZÞ − αð5Þ;exps ðMZÞ

Δαð5Þ;exps ðMZÞ

þ ΔxMW

MW −Mexp
W

ΔMexp
W

þ ΔxMH

MH −Mexp
H

ΔMexp
H

þ ΔxMt

Mt −Mexp
t

ΔMexp
t

þ βx
μ − μthr

μthr
� δxμ

� δxtru; ð6Þ

allowing for linear extrapolations in the least precisely known
input parameters quoted above [2] andμthr, whichwe disentangle
from Mexp

t ¼ MMC
t , and list the coefficients in Table I.

We now in turn apply criterion (2) and the approach of
Ref. [20] and write the resulting critical masses and
associated scales X ¼ Mcri

i ; μcrii ; ~Mcri
i ; ~μcrii with i ¼ t; H in

the form

X ¼ X0 þ ΔXαs

αð5Þs ðMZÞ − αð5Þ;exps ðMZÞ
Δαð5Þ;exps ðMZÞ

þ ΔXM
M −Mexp

ΔMexp � δXpar þ δX�
μ � δXtru; ð7Þ

where M ¼ MH (Mt) if i ¼ t (H), ΔXαs and ΔXM are the
1σ errors due to αð5Þs ðMZÞ andM, respectively, δXpar are the
residual parametric errors combined in quadrature, δX�

μ are
the shifts due to the choices ξ ¼ 2�1, and δXtru are the
truncation errors induced by those in Table I. The coef-
ficients in Eq. (7) are collected in Table II. ~Mcri

t is 0.20 GeV
larger than Mcri

t , and ~Mcri
H is 0.40 GeV smaller than Mcri

H .
These shifts reflect the scheme dependence. μcrit and μcriH fall
slightly short of MP, for which log10MP ¼ 19.086, where
the SM definitely ceases to be valid, while ~μcrit and ~μcriH lie
appreciably beyond MP, which is an inherent problem of
Ref. [20] and was cured there by the ad hoc introduction of
some new dimension-six operator. In the remainder of this
Letter, we concentrate on the approach based on Eq. (2) [5].
To assess the significance of the higher-order corrections

that were not yet included in Ref. [5], namely the fullOðα2Þ
terms in δiðμÞwith i ¼ W;Z;H; q [12,14], theOðααsÞ term
in δαsðμÞ [13], and theOðα4sÞ terms in δαsðμÞ [17] and δqðμÞ
[18], we switch them off one at a time. The resulting central
values and scale dependencies of the critical parameters are
also contained in Table II. TheOðα2Þ terms in δiðμÞ [12,14]
shift Mcri

t and Mcri
H by −0.11 and þ0.24 GeV, respectively,

and reduce their scale uncertainties by almost a factor of 3.
On the other hand, the Oðα4sÞ terms in δqðμÞ [18] produce
larger and opposite shifts in Mcri

t and Mcri
H , namely þ0.20

and −0.42 GeV, respectively, but merely reduce their
scale uncertainties by less than 10%. The OðααsÞ [5]
and Oðα4sÞ [17] terms in δαsðμÞ are much less significant.

TABLE I. Coefficients in Eq. (6). The entries in the last row are given in units of GeV.

x x0 Δxαs ΔxMW
ΔxMH

ΔxMt
βx δxμ δxtru

g 0.35838 −3.8 × 10−6 −2.3 × 10−4 −2.5 × 10−6 þ7.1 × 10−5 þ2.1 × 10−3 8.5 × 10−5 6.4 × 10−4

g0 0.64812 þ8.5 × 10−7 þ1.2 × 10−4 −6.6 × 10−7 −9.8 × 10−6 −5.2 × 10−3 5.8 × 10−5 1.0 × 10−3

gs 1.16540 þ2.7 × 10−3 þ8.9 × 10−8 þ7.8 × 10−8 −4.0 × 10−5 −7.2 × 10−2 5.6 × 10−5 � � �
yt 0.93517 −3.6 × 10−4 −1.3 × 10−7 −8.6 × 10−6 þ5.1 × 10−3 −5.2 × 10−2 8.0 × 10−4 1.2 × 10−3

yb 0.01706 −5.7 × 10−5 −5.1 × 10−10 þ1.3 × 10−7 −2.4 × 10−7 −9.2 × 10−4 2.5 × 10−4 1.1 × 10−3

λ 0.12714 −6.2 × 10−6 −4.2 × 10−7 þ8.2 × 10−4 þ6.4 × 10−5 −2.0 × 10−2 5.8 × 10−4 5.5 × 10−4

m 131.86 −2.6 × 10−3 −4.4 × 10−4 þ3.8 × 10−1 þ1.2 × 10−1 þ2.6 7.3 × 10−1 4.1 × 10−2

TABLE II. Coefficients in Eq. (7) and central values with scale dependencies obtained upon switching off the Oðα2Þ terms in
δiðμÞwith i ¼ W;Z;H; q, theOðααsÞ andOðα4sÞ terms in δαsðμÞ, and theOðα4sÞ terms in δqðμÞ one at a time. The unit of mass is taken to
be GeV.

X X0 ΔXαs ΔXM δXpar δXþ
μ δX−

μ δXtru δOðα2Þ
i δOðααs;α4s Þ

αs δOðα4sÞ
q

Mcri
t

171.44 0.23 0.20 0.001 −0.36 0.17 −0.02 171.55−0.47þ1.04 171.43−0.36þ0.17 171.24−0.38þ0.19

log10 μcrit
17.752 −0.051 0.083 0.007 0.007 −0.006 −0.002 17.783þ0.062

−0.008 17.754þ0.007
−0.006 17.751þ0.007

−0.007

Mcri
H

129.30 −0.49 1.79 0.002 0.72 −0.33 0.04 129.06þ0.95
−2.14 129.32þ0.73

−0.33 129.72þ0.76
−0.38

log10 μcriH
18.512 −0.158 0.381 0.008 0.173 −0.082 0.008 18.495þ0.226

−0.531 18.518þ0.174
−0.082 18.602þ0.184

−0.094

~Mcri
t

171.64 0.23 0.20 0.001 −0.36 0.17 −0.02 171.74−0.46þ1.04 171.63−0.36þ0.17 171.43−0.37þ0.19

log10 ~μcrit
21.442 −0.059 0.094 0.005 −0.083 0.022 0.002 21.485−0.085þ0.343 21.445−0.083þ0.022 21.441−0.072þ0.014

~Mcri
H

128.90 −0.49 1.79 0.003 0.73 −0.34 0.04 128.67þ0.95
−2.15 128.92þ0.73

−0.34 129.32þ0.76
−0.38

log10 ~μcriH 22.209 −0.181 0.436 0.007 0.092 −0.062 0.013 22.201þ0.146
−0.171 22.217þ0.094

−0.062 22.312þ0.113
−0.082
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All these observations approximately carry over to ~Mcri
t

and ~Mcri
H .

Apart from the issue of gauge dependence, our analysis
differs from that of Refs. [10,11] in the following respects.
In Refs. [10,11], the OðααsÞ term in δαsðμÞ [13] and the
Oðα4sÞ terms in δαsðμÞ [17] and δqðμÞ [18] were not
included; μthr was affected by the MMC

t variation, which
explains the sign difference in the corresponding shift in
Mcri

H ; and the scale uncertainties were found to be approx-
imately half as large as here for reasons unknown to us.
In Fig. 1, the RG evolution flow from μthr to μcri and

beyond is shown in the ðλ; βλÞ plane. The propagation with
μ of the 1σ and 3σ confidence ellipses with respect toMMC

t
and MH tells us that the second condition in Eq. (2) is
almost automatic, the ellipses for μ ¼ 1018 GeV being
approximately degenerated to horizontal lines. For default
input values, λðμÞ crosses zero at μ ¼ 1.55 × 1010 GeV.
The contour of Mcri

t approximately coincides with the right
envelope of the 2σ ellipses, while the one of Mcri

H , which
relies onMMC

t , is driven outside the 3σ band as μ runs from
μcriH to μthr.
Our upgraded and updated version of the familiar phase

diagram [10,11,20,24] is presented in Fig. 2. Besides the
boundary of the stable phase defined by Eq. (2), on which
the critical points with Mcri

t and Mcri
H are located, we also

show contours of λðμ0Þ ¼ 0 and βλðμ0Þ ¼ 0. The demar-
cation line between the metastable phase and the instable
one, in which the lifetime of our vacuum is shorter than the

age of the Universe, is evaluated as in Ref. [20] and
represents the only gauge-dependent detail in Fig. 2. The
customary confidence ellipses with respect to MMC

t and
MH, which are included Fig. 2 for reference, have to be
taken with caution because they misleadingly suggest that
the tree-level mass parameter MMC

t and its error [2]
identically carry over to Mt, which is actually the real
part of the complex pole position upon mass renormaliza-
tion in the on-shell scheme [25]. In view of the resonance
property, a shift of order Γt ¼ 2.00 GeV [2] would be
plausible, which should serve as a useful error estimate for
the time being.
In conclusion, we performed a high-precision analysis of

the vacuum stability in the SM incorporating full two-loop
threshold corrections [5,12–14], three-loop beta functions
[6], and Oðα4sÞ corrections to the matching and running of
gs [7,17] and yq [8,18], and adopting two gauge-indepen-
dent approaches, one based on the criticality criterion (2)
for λðμÞ [5] and one on a reorganization of VeffðHÞ so that
its minimum is gauge independent order by order [20]. For
the Mt upper bound we thus obtained Mcri

t ¼ ð171.44�
0.30þ0.17−0.36Þ GeV and ~Mcri

t ¼ ð171.64� 0.30þ0.17−0.36Þ GeV,
respectively, where the first errors are experimental, due
the 1σ variations in the input parameters [2], and the second
ones are theoretical, due to the scale and truncation
uncertainties. In want of more specific information, we
assume the individual error sources to be independent and

FIG. 1 (color online). RG evolution of λðμÞ from μthr to μcri and
beyond in the ðλ; βλÞ plane for default input values and matching
scale (red solid line), effects of 1σ (brown solid lines) and 3σ
(blue solid lines) variation in MMC

t , theoretical uncertainty due to
the variation of ξ from 1=2 to 2 (upper and lower black dashed
lines with asterisks in the insets), and results for Mcri

t (green
dashed line) and Mcri

H (purple dashed line). The 1σ (brown
ellipses) and 3σ (blue ellipses) contours due to the errors in
MMC

t andMH are indicated for selected values of μ. The insets in
the upper right and lower left corners refer to μ ¼ MMC

t and
μ ¼ 1.55 × 1010 GeV, respectively.

FIG. 2 (color online). Phase diagram of vacuum stability (light-
green shaded area), metastability, and instability (pink shaded
area) in the ðMH;MtÞ plane, contours of λðμ0Þ ¼ 0 for selected
values of μ0 (purple dotted lines), contours of βλðμ0Þ ¼ 0 for
selected values of μ0 (solid parabolalike lines) with uncertainties
due to 1σ error in αð5Þs ðMZÞ (dashed and dot-dashed lines), critical
line of Eq. (2) (solid green line) with uncertainty due to 1σ error
in αð5Þs ðMZÞ (orange shaded band), and critical points with Mcri

t
(lower red bullet) and Mcri

H (right red bullet). The present world
average of ðMMC

t ; MHÞ (upper left red bullet) and its 1σ (purple
ellipse), 2σ (brown ellipse), and 3σ (blue ellipse) contours are
marked for reference.

PRL 115, 201802 (2015) P HY S I CA L R EV I EW LE T T ER S week ending
13 NOVEMBER 2015

201802-4



combine them quadratically to be on the conservative side.
The 0.20 GeV difference between the central values ofMcri

t
and ~Mcri

t indicates the scheme dependence, which arguably
comes as a third independent source of theoretical uncer-
tainty. As our final result, we hence quote the combined
value M̂cri

t ¼ ð171.54� 0.30þ0.26−0.41Þ GeV, which is compat-
ible withMMC

t ¼ ð173.21� 0.87Þ GeV at the 1.3σ level. In
view of this and the present lack of knowledge of the
precise relationship between and MMC

t and Mt mentioned
above, the familiar notion [10,11] that our vacuum is
metastable is likely to be premature [24].
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