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We report the experimental measurement of the equation of state of a two-dimensional Fermi gas with
attractive s-wave interactions throughout the crossover from a weakly coupled Fermi gas to a Bose gas of
tightly bound dimers as the interaction strength is varied. We demonstrate that interactions lead to a
renormalization of the density of the Fermi gas by several orders of magnitude. We compare our data near
the ground state and at finite temperature with predictions for both fermions and bosons from quantum
Monte Carlo simulations and Luttinger-Ward theory. Our results serve as input for investigations of
close-to-equilibrium dynamics and transport in the two-dimensional system.
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The rich phenomenology of fermionic many-body sys-
tems reveals itself on very different scales of energy, ranging
from solid state materials and ultracold quantum gases to
heavy-ion collisions and neutron stars. Understanding the
underlying mechanisms promises substantial advances both
on a fundamental and technological level. Ultracold quantum
gases provide a platform for the exploration of the macro-
scopic phases and thermodynamic properties of fermionic
many-body Hamiltonians in a highly controlled manner [1].
In particular, using strongly anisotropic traps, it is possible to
enter the 2D regime [2–7] which is of large interest to the
condensed matter community [8,9].
The thermodynamic properties of a many-body

system are encapsulated in its equation of state (EOS)
nðμ; T; fgigÞ, which expresses the density n as a function of
chemical potential μ, temperature T, and further system
parameters fgig characterizing, for instance, the inter-
actions between particles. For ultracold atoms with
short-range attraction, the only additional parameter is
the s-wave scattering length a. This universality allows
one to describe different atomic species by the same EOS
nðμ; T; aÞ. The equilibrium EOS is also the basis for
studying dynamics close to thermal equilibrium.
In this Letter, we report the experimental determination

of the EOS of two-component fermions with attractive
short-range interactions in the 2D BEC-BCS crossover
regime. We tune the interaction strength using a Feshbach
resonance to connect the well-known limits of a weakly
attractive Fermi gas and a Bose gas of tightly bound dimers.
We report the measurement of the finite temperature EOS
in the intermediate, strongly correlated region and compare
with theoretical predictions.
Our experimental setup consists of a population-

balanced mixture of N ∼ 100000 6Li-atoms in the lowest
two hyperfine states, which we denote by j1i and j2i. The
interactions between both species can be tuned by means of

a magnetic Feshbach resonance [10,11]. The atoms are
trapped in a highly anisotropic trapping potential, which is
radially symmetric to a high degree in the xy plane and
provides a tight confinement along the z direction with
the aspect ratio of frequencies ωx∶ωy∶ωz ≈ 1∶1∶310. A
detailed description of the experiment is given in Ref. [7].
This strong anisotropy induces a quantum confinement of
the many-body system, with a discrete excitation spectrum in
the z direction and an effective 2D continuum of states in the
xy plane. A 2D system is realized if the interacting system is
in its ground state in the z direction. Although the explicit
form of this ground state is not known and depends on the
3D scattering length a3D [12], the ratioNðωx=ωzÞ2 ∼ 1 close
to unity indicates that the first excited state in the z direction
will be partially populated. In this quasi-2D regime, inter-
actions can still be described by an effective 2D scattering
length a2D [6,13,14].
In order to parametrize the local density of the gas, we

introduce the Fermi wave vector kF ¼ ð2πnÞ1=2, where n ¼
n1 þ n2 is the planar density and nσ ¼ n=2 is the density of
atoms in state jσi. We further define the Fermi energy εF ¼
ℏ2k2F=ð2MÞ and Fermi temperature TF ¼ εF=kB, where ℏ is
Planck’s constant, kB Boltzmann’s constant, and M the
atomic mass of 6Li. The 2D crossover [15–24] is para-
metrized by lnðkFa2DÞ. In the BEC limit lnðkFa2DÞ ≪ −1
the system can be described as a 2D Bose gas with effective
coupling constant ~g ≈ −2π= lnðkFa2DÞ. In the BCS limit
lnðkFa2DÞ ≫ 1 the thermodynamic properties approach that
of an ideal Fermi gas. In analogy to the 3D BEC-BCS
crossover [25–28], the 2D gas undergoes a finite temper-
ature phase transition to a superfluid state for all values of the
parameter ðkFa3DÞ−1 [7]. The associated transition, how-
ever, is of Berezinskii-Kosterlitz-Thouless type and the
superfluid phase exhibits quasi-long-range order [29–34].
For a 2D ultracold quantum gas with short-range

attraction, a two-body bound state with binding energy
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εB ¼ ℏ2=ðMa22DÞ > 0 exists for all values of the coupling
strength. This has to be contrasted with the 3D case, where
a bound state only exists on the Bose side of the resonance.
In both cases, the chemical potential for a single fermion
becomes negative in the Bose limit and approaches
μ ≈ −εB=2. The crossover point between the Bose and
Fermi sides can be defined by the zero crossing of μ [35].
The chemical potential shifted by the bound-state energy,
~μ ¼ μþ εB=2, is positive at high phase-space densities.
At zero temperature, n > 0 is equivalent to ~μ > 0.
In the experimental realization of the quasi-2D gas in an

anisotropic 3D trap, the interaction strength a2D depends on
the typical momenta of scattering particles and thereby on
the filling in the trap with axial frequency ωz. One can write

a2D ¼ að0Þ2De
−1
2
Δwð ~μ=ℏωzÞ, where að0Þ2D is the scattering length in

the dilute limit and Δw is a positive function which reduces

a2D at finite density [6,13,36]. The correction to að0Þ2D
vanishes in the Bose limit where ~μ → 0, and becomes
strongest in the Fermi limit where ~μ≃ εF. In our experi-
ment we have ℏωz=kB ¼ 265 nK, which has to be com-
pared with typical values ~μ0 ¼ ð40;…; 200Þ nK and
T ¼ ð60;…; 25Þ nK when going from the Bose to the
Fermi limit. As most particles are in the center of the cloud,
we approximate a2D and εB by their central values using
Δwð~μ0=ℏωzÞ, giving Δw ≈ 0.2, 0.9, and 1.4 in the Bose,
crossover, and Fermi regimes, respectively.
We extract the EOS of the homogeneous gas from the

trapped system by using the local density approximation
(LDA) which assigns a local chemical potential μð~rÞ ¼
μ0 − Vð~rÞ to each point ~r in the trapping potential Vð~rÞ
[37]. Since Vð~rÞ is known to a high precision, the
homogeneous density nðμ; TÞ can be deduced from the
measured local in situ density of the inhomogeneous
system nð~rÞ ¼ n(μ0 − Vð~rÞ; T) once μ0 and T have been
determined [38]. The extraction of the homogeneous EOS
from the trapped gas has been applied to both bosonic and
fermionic systems and successfully compared with theo-
retical calculations [39–46].
Low-temperature EOS.—In order to determine the low-

temperature equation of state nðμ; T → 0; a2DÞwe extract ~μ0
from a Thomas-Fermi (TF) fit of the central region of the
cloud. The TFmodel assumes locally εF ¼ c ~μ for the central
density region. This scaling is valid for large phase space
densities (PSDs) nλ2T , where λT ¼ ½2πℏ2=ðMkBTÞ�1=2 is the
thermal wavelength of atoms. We find that the prefactor c
only weakly depends on the temperature and fitting range
at sufficiently low temperature and high densities, which
confirms the validity of the linear relation εF ∝ ~μ (see the
Supplemental Material [36] for details). We fit c in the
intervals IA ¼ ½0.4; 0.8�npeak and IB ¼ ½0.5; 1�npeak for peak
density npeak, and define ~μ0 ¼ ð ~μ0;A þ ~μ0;BÞ=2 as the average
value of both outcomes.
In Fig. 1 we show the low-temperature EOS across the

2D BEC-BCS crossover in terms of ~μ=εF ¼ 1=c vs
lnðkFa2DÞ, where kF corresponds to the peak density.
The corresponding temperatures (60–25 nK from left to

right) are very low compared to TF (1500–300 nK). For the
plot we averaged the TF slope c over 30 images at the
lowest temperatures for each value of the interaction
strength. We find c to be weakly dependent on temperature
as we increase T=TF by ð40–100Þ%, which is a necessary
condition for the applicability of the linear fit of the central
region. The statistical error of ~μ=εF is 10%within the whole
crossover. We estimate the error due to systematic uncer-
tainties resulting from the absorption imaging, atoms in
noncentral pancakes [47], magnification, and the determi-
nation of the binding energy to be 15% and 13% on the
Bose and Fermi sides, respectively [7,36].
Our measured low-temperature equation of state con-

nects both perturbative limits of the crossover. In the Bose
limit we compare our results with predictions for bosonic
dimers of mass 2M, dimer density nd ¼ n=2, chemical
potential μd ¼ 2~μ, and thermal wavelength λd ¼ λT=

ffiffiffi

2
p

.
The interactions between dimers can be modeled by an
effective 2D coupling strength ~g ¼ ffiffiffiffiffiffiffiffi

16π
p ð0.6a3D=lzÞ with

lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðMωzÞ
p ¼ 0.551 μm the oscillator length of axial

confinement [49]. We find ~μ=εF ¼ 0.024ð2Þ, 0.046(4),
0.12(1) for the data points with lnðkFa2DÞ ≤ −0.71 corre-
sponding to effective boson coupling strengths ~g ¼ 0.60,
1.07, 2.75, respectively. This is in excellent agreement with
the perturbative Bose gas formula ~μ=εF ¼ ~g=ð8πÞ ¼ 0.024,
0.043, 0.11. Furthermore, we verify ~g ≈ −2π= lnðkFa2DÞ
for very small ~g, which is a result of a2D ≃ að0Þ2D on the Bose
side, where the filling correction Δw is small.
Far on the Fermi side, our low-temperature data are

consistently below the Hartree-Fock (HF) prediction

FIG. 1. Low-temperature EOS across the 2D BEC-BCS cross-
over. The experimental results are obtained from measurements
of the quasi-2D gas at the lowest attainable temperatures, which
corresponds to T=TF ≈ 0.05 and 0.1 on the Bose and Fermi sides.
The data points shown as diamonds (circles) correspond to
measurements in the superfluid (normal) phase. The solid red
line on the Bose side corresponds to the mean field formula
~μ=εF ¼ −η−1=4 with η ¼ lnðkFa2DÞ, whereas the dashed and
solid green lines on the Fermi side display the non-self-consistent
and self-consistent Hartree-Fock predictions 1=ð1þ η−1Þ and
1 − η−1 for weakly attractive fermions. The orange line is
the prediction for the ground state EOS from recent QMC
calculations [48].
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~μ=εF ≃ μ=εF ¼ 1 − ½lnðkFa2DÞ�−1. However, the addi-
tional error due to systematic uncertainties [36] is of the
same size as the statistical one displayed in Fig. 1, such that
we find consistency with HF theory within the errors of our
measurements. Note that an extension of the BCS mean-
field theory toward the crossover, which works reasonably
well in 3D [50,51], would give ~μ=εF ¼ 1 for all interaction
strengths in the 2D case and thus clearly misses the
crossover physics [52]. The ground-state equation of state
has been investigated theoretically in Refs. [48,53–55].
In Fig. 1 we compare our measurements to recent QMC
simulations of the ground state [48,56]. For a comparison
of different theoretical predictions of ~μ=εF at zero temper-
ature see, for instance, Ref. [55]. Our data at small but finite
temperature lie consistently below the zero-temperature
prediction.
Finite-temperature EOS.—While the temperature is con-

stant within each atom cloud, it varies for every individual
realization of the gas (“shot”). In our analysis we therefore
determine T and μ0 from each density profile and construct
the dimensionless PSD fiðx; yÞ ¼ fðβ ~μ; βεBÞ ¼ nλ2T and
normalized density hiðx; yÞ ¼ hðβμ; βεBÞ ¼ n=n0 for every
shot i. Here, n0ðμ; TÞ ¼ 2λ−2T lnð1þ eβμÞ is the EOS of an
ideal Fermi gas. Finally, we average fi and hi over 30–150
shots to obtain the EOS with very small statistical error, even
though the thermodynamic parameters vary from shot to
shot. The values of T and μ0 can be found by different
methods: whereas the TF fit determines μ0 from the dense
central region of the cloud, fitting a reference EOS to the
outer low-density regions gives both T and μ0.
We first summarize the reference EOSs used in this

work. In the perturbative Bose limit of small ~g, the outer
wings are described by the HF formula ndλ2d ¼
− lnð1 − eβμd−ð~g=πÞndλ

2
dÞ. The Boltzmann limit for a gas of

dimers or atoms, respectively, reads nd ¼ λ−2d eβμd ¼
2λ−2T e2β ~μ and nσ ¼ λ−2T eβμ. The latter two formulas are
elegantly connected by the second order virial expansion
nσλ2T ¼ lnð1þ eβμÞ þ 2b2e2βμ [35,36,57]. In the weakly
interacting Fermi limit b2 → 0, and nσλ2T approaches the
EOS of an ideal Fermi gas. On the Bose side, instead, εB
becomes large and the fermion fugacity eβμ ¼ eβð ~μ−εB=2Þ is
extremely small, suppressing the first term of the EOS.
However, b2 ¼ eβεB up to exponentially small corrections
and we recover the bosonic Boltzmann EOS nσ ¼
2λ−2T eβð2μþεBÞ ¼ λ−2d eβμd . Hence, the second order virial
expansion has the correct limiting behavior and provides
a well-defined reference EOS throughout the crossover.
We apply the HF formula for the perturbative Bose gas to

determine T and μ0 only for B ¼ 692 G where ~g ¼ 0.60.
For the remaining magnetic fields, B½G� ¼ 732–922, the
central chemical potential ~μ0 is determined from the TF fit
of the central region. The temperature is estimated by
T ¼ ðTV þ TBÞ=2, where TV and TB are obtained from
second order virial and Boltzmann fits to the outer region,
respectively. This choice is motivated by the observation
that TV and TB give upper and lower bounds on the true

temperature for the interaction strengths considered here.
We quantitatively compare different methods to obtain T
and μ0 in the Supplemental Material [36]. In particular, we
show that μ0 obtained from the virial and Boltzmann fits
agrees well with the one from the TF fit, which also
supports the validity of the TF assumption.
BoseEOS.—Figure2shows theEOSon theBosesideof the

crossover. Because of the exponentially large binding energy
in the Bose limit, the logarithmic dependence of the EOS
on βεB in nλ2T ¼ fðβ ~μ; βεBÞ can be replaced by
the ~g dependence in nλ2T ¼ Fðβ ~μ; ~gÞ, where Fðx; ~gÞ can
directly be compared with bosonic theory for coupling ~g.
The experimental data correspond to ~g ¼ 0.60, 1.07, 2.75.
The plotted curves represent the averageFðx; ~gÞ fromapprox-
imately 30 individual shots for each interaction strength.
We compare our results on the Bose side to classical

Monte Carlo (MC) and quantum Monte Carlo (QMC)
simulations of bosons in order to understand whether the
fermionic system can be described purely in terms of
bosons. The classical MC computations are valid for the
weakly coupled, homogeneous 2D Bose gas in the fluc-
tuating regime [58,59]. In our case ~g is large, and quantum
effects are expected to modify the result. Even so, the
critical temperature for ~g < 3 is well described by extrapo-
lating MC calculations to large ~g [34,60,61]. We also
analyze density profiles obtained from QMC simulations of
a trapped Bose gas with similar trapping parameters as in
the experiment; see Refs. [34,62,63] for details. We extract

FIG. 2. Phase space density on the Bose side of the crossover.
The experimental data points are shown as filled shapes. We
compare to bosonic theory with effective coupling strengths
~g ¼ 0.60, 1.07, 2.75. Open shapes represent the EOS extracted
from the QMC simulation of the quasi-2D Bose gas trapped in an
external potential with similar parameters as employed in experi-
ment. The dashed curves show the classical MC prediction for the
weakly coupled homogeneous 2D Bose gas from Ref. [58]
extrapolated to large values of ~g. For moderate densities we find
good agreement between all three approaches. For large densities,
however, experiment and trapped QMC calculations deviate from
the classical homogeneous result which scales like the mean field
prediction ndλ2d ¼ ð2π=~gÞβμd þ ln½ð2~g=πÞndλ2d − 2βμd�. This
may be due to quantum effects appearing at large ~g, as well
as the axial confinement.

PRL 116, 045303 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
29 JANUARY 2016

045303-3



the temperature and chemical potential of the QMC density
profiles from the low-density Boltzmann regime and apply
the LDA to obtain the EOS Fðβ ~μ; ~gÞ.
We find good agreement of our measurements with the

EOS extracted from the QMC profiles. The deviations
between both EOSs are within the systematic errors in the
determination of n, T and μ0 and we conclude that the
fermionic system with ~g ≤ 2.75 is well described by a
strongly coupled quantum gas of dimers. Both experiment
and QMC are, however, well below the classical MC
predictions for large β ~μ and mean field theory. There are
two effects which could explain this behavior: On the one
hand, quantum fluctuations become important for large ~g
and high densities. On the other hand, both experiment and
QMC simulations are performed in a quasi-2D setting with
nonzero extent in the z direction.
Crossover EOS.—Figure 3 shows the EOS in the strongly

correlated crossover regime between the Bose and Fermi
limits. The EOS hðx; yÞ ¼ n=n0 is sampled over approx-
imately 150 shots for each of the magnetic fields
B½G� ¼ 812, 832, 852, 892. We compare our results with
theoretical predictions for the homogeneous 2D BEC-BCS
crossover from Luttinger-Ward (LW) theory [23] and fer-
mionic QMC simulations [24]. Our comparison covers a
substantial renormalization by 2 orders of magnitude in the
density n=n0. It reveals a maximum in n=n0 characteristic of
the density driven crossover in 2D [23]. We find that the
maximum of height 2eβεB=2 is reached at βμ≃ −βεB=2þ
lnð2Þ for large βεB. The origin of this scaling can be
understood from the virial expansion in the Bose limit:
nσλ2T ≈ 2 expð2β ~μÞ ¼ 2 at β ~μ ¼ 0, which implies n=n0 ≈
2= lnð1þ e−βεB=2Þ ≈ 2eβεB=2 at μ ¼ −εB=2; see the
Supplemental Material [36] for details. The difference
between the LW and QMC EOSs lies within our systematic
errors from the T and μ0 determination and thus cannot be
resolved with the present analysis. In the Fermi limit where
~μ0=ℏωz ≲ 0.75 is largest, we observe that the filling cor-
rection Δw shifts the EOS slightly upward. This effect is
minimized for small particle numbers. In a recent work by

Fenech et al. [46] the EOS in the normal phase for βεB < 0.5
has been determined using 6Li atoms in the 2D regime.
In this work we have measured the EOS of ultracold

fermions in the BEC-BCS crossover in a strongly aniso-
tropic confinement. Our results connect the perturbative
Bose gas, the strongly interacting Bose gas, the strongly
interacting fermionic superfluid in the crossover regime,
and the perturbative Fermi liquid as we tune the effective
2D scattering length a2D using a Feshbach resonance. Our
EOS data covers both the low and intermediate temperature
thermodynamics of the system. We compare with bosonic
and fermionic quantum many-body theory and find a
remarkably strong renormalization of the density n=n0.
These results provide a basis for phenomenological com-
putations such as hydrodynamic models of the cloud.
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