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Biochemical processes are inherently stochastic, creating molecular fluctuations in otherwise identical
cells. Such “noise” is widespread but has proven difficult to analyze because most systems are sparsely
characterized at the single cell level and because nonlinear stochastic models are analytically intractable.
Here, we exactly relate average abundances, lifetimes, step sizes, and covariances for any pair of
components in complex stochastic reaction systems even when the dynamics of other components are left
unspecified. Using basic mathematical inequalities, we then establish bounds for whole classes of systems.
These bounds highlight fundamental trade-offs that show how efficient assembly processes must invariably
exhibit large fluctuations in subunit levels and how eliminating fluctuations in one cellular component
requires creating heterogeneity in another.

Processes that create nongenetic heterogeneity are
ubiquitous in cells [1–4]. They are typically analyzed by
simulating stochastic models for assumed interactions and
parameters or by deriving intuitive results for approximate
toy models. However, important properties are often
unknown, broad principles are hard to extrapolate from
examples, and many different stochastic models can fit
the same data. Engineering and physics have met similar
challenges by deriving results for families of models in
terms of quantities that are more easily interpreted or
measured [5,6]. To be broadly applicable in biology, such
generalized analytical approaches would need to account
for inherently stochastic processes far from thermodynamic
equilibrium and allow for nonlinear reaction rates of adding
or removing individual components in discrete steps or
bursts—without linearizations or Gaussian approximations.
They should also be formulated in terms of properties that
have clear physical definitions or can be estimated exper-
imentally, and—most importantly—be able to make strong
statements about sparsely characterized reaction networks
without ignoring or guessing the unknown parts.
This may seem impossible, and indeed it is if the goal is

to obtain closed-form expressions capturing a system’s
behavior: most nonlinear stochastic models are analytically
intractable, and the question of how a system behaves is not
even well posed unless all parts are specified. However, it
is possible to take this approach to determine bounds on
behavior for classes of systems that share some specified
parts but differ arbitrarily in any other parts. Specifically,
though each network component is affected by every other
indirectly connected component, the differential equations

for averages and variances only directly depend on how
the corresponding component is made and degraded.
Those equations can be combined with basic statistical
inequalities to derive general bounds, which, in turn, can
be exactly expressed in terms of physical observables
that can be experimentally identified without knowing
the microscopic details of the system. If the bounds are
achievable, this combination of simple mathematical prin-
ciples identifies broad rules for what is possible in cells.
A philosophically similar but mathematically different
approach has been used to study the variation in reaction
times for single substrate molecules, considering complex
transitions between intermediate molecular states [7–9]
while we consider complex control networks of interacting
components.
General fluctuation constraints in terms of physical

observables.—We consider the general discrete stochastic
process with state vector x ¼ ðx0;…; xnÞ undergoing
reactions

x�!rkðxÞ xþ dk k ¼ 1; 2;… ð1Þ

that change the level of component Xi (lowercase xi
denotes its abundance) by a discrete jump of size dik, with
a rate rkðxÞ that can depend on the state of the entire
system. The evolution equations for the statistical moments
can then be summarized by collecting birth reactions with
positive dik and death reactions with negative dik for each
component Xi to define total birth (Rþ

i ) and death (R−
i )

fluxes as R�
i ¼ P

krkjdikj for dik > 0 and dik < 0, respec-
tively. Specifically, the average abundances hxii and the
(co)variance matrix C with entries Cij ¼ hxixji − hxiihxji
are described by
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dhxii
dt

¼ hRþ
i i − hR−

i i ¼ ∶ − hΔRii
dCij

dt
¼ Covðxi;ΔRjÞ þ Covðxj;ΔRiÞ þ

X
k

dikdjkhrki:

ð2Þ

These are the usualmoment equations for stochastic reaction
systems [10]. We will consider them element by element
for a small subset of specified variables (without loss of
generality denoted X0;…; Xm). The unspecified variables
(Xmþ1, Xmþ2…) are then trivially allowed any network
topology and dynamics, and nonlinear feedback loops are
allowed to connect the specified and unspecified parts.
In fact, the unspecified variables may include nonphysical
“mock variables”, and because we allow an unbounded
number of such variables, there is virtually no limit to the
complexity of features that can be realized by the unspeci-
fied parts, including history dependent dynamics. The
results below thus also apply to a wide range of non-
Markovian systems that technically are not described by a
chemical master equation (see Supplemental Material [11]).
As in most previous studies, we restrict our analyses

to systems where the specified variables are wide-sense
stationary, which can be experimentally verified and does
not exclude oscillatory or multistable systems that even-
tually decorrelate in the population-level statistics. The
results also apply to the time averages of nonstationary
systems with coordinated behavior that does not decorrelate
(see Supplemental Material [11]).
The problem is that the equation systems cannot be

solved if only a few parts are specified. However, random
variables are also subject to many universal inequalities,
e.g., that the normalized covariance matrices must be
positive semidefinite

detðηÞ ≥ 0 for ηij ¼
Covðxi; xjÞ
hxiihxji

: ð3Þ

Combining these with the equations of the specified
components constrains the range of possible fluctuations.
Another challenge is that each specified covariance

equation has a “diffusion” term that depends on the reaction
step sizes and the average rates. When the rates are
nonlinear functions of the state variables, these are ana-
lytically intractable, and even for linear rates, they can
quickly become algebraically complicated combinations of
kinetic parameters. We therefore exactly map the terms
onto general physical descriptors. First, we apply Little’s
Law [21] from queueing theory, which universally relates
arrival and service rates to lengths of queues and exactly
applies to the type of stochastic processes above: regardless
of the complexity of the system or nonlinearities in
degradation rates, at stationarity the average lifetime τi
of any component Xi satisfies

τi ¼ hxii=hR−
i i: ð4Þ

Next, we identify the average jump sizes hsiji, defined as
the average change in the number of Xj molecules as an Xi

molecule is made or degraded, where the change is negative
if one is made while the other is degraded. These quantities
characterize the discreteness of each component’s dynam-
ics and are formally defined as

hsiji ¼
X
k

ρikjdjkjsgnðdikdjkÞ; ð5Þ

where ρik is the fraction of flux of component XI going
through reaction k. They thus have straightforward interpre-
tations regardless of their exact numerical values, but the latter
also often follow directly from the stoichiometry of reactions
changing Xi levels regardless of the rest of the network.
For example, if X2 is made in bursts of a and eliminated in
bursts of b then hs22i ¼ ðaþ bÞ=2, and if the degradation
bursts coincide with the production of c copies of X7, then
hs27i ¼ −c=2, regardless of how rate functions depend on
other components in the network. Thevalues of hsiji can even
be analytically identified for broad ranges of systems with
distributed step sizes, nonlinear rates, and incompletely
specified dynamics (see Supplemental Material [11]).
Simple algebraic manipulations then show that:

Uþ UT ¼ D ð6Þ
for the matrices with entries

Uij ¼
1

τj

Covðxi; R−
j − Rþ

j Þ
hxiihR�

j i
Dij ¼

1

τi

hsiji
hxji

þ 1

τj

hsjii
hxii

:

The “diffusion”matrixD exactly captures randomizing low
number effects in terms of average abundances, lifetimes
and step sizes—which have distinct physical interpretations
and often can be experimentally identified—while U
quantifies the correlations between states and net fluxes,
which in conventional linearized approximations becomes
a product of ηij and a corrective “drift” matrix (see
Supplemental Material [11]).
The approach above makes no mathematical approxima-

tions for discrete and nonlinear stochastic systems, but the
identified constraints could be mathematically conservative,
or the fluctuations could be insignificantly constrained by
a few specific assumptions if the components of interest
can affect and be affected by arbitrarily complex systems.
However, in all systems we have considered, the bounds
have been surprisingly tight and severe even when speci-
fying very little. Next, we demonstrate how our approach
can be used to reveal unavoidable performance trade-offs
in two central biological regulatory architectures: complex
formation and negative feedback loops.
Bounds for generalized assembly processes.—Many

structures in cells are made by assembling smaller pieces
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into larger complexes. Unbalanced production rates will
then cause some pieces to accumulate, subjecting them to
degradation and dilution. Systems selected to minimize
such wasteful turnover can tune the average production
rates to match the assembly stoichiometries, as observed for
many proteins expressed jointly in operons [22], but the
probabilistic nature of individual reaction events will still
cause temporary surpluses or deficits. Here, we analyze
such operons embedded in complex networks, where
subunits X0, X1 are produced at the same rate, degraded
individually, and form a stable complex according to

x0�!
Rðu;x0;x1Þ

x0 þ b x1�!
Rðu;x0;x1Þ

x1 þ b

x0�!
βx0 x0 − 1 x1�!

βx1 x1 − 1

ðx0; x1Þ�!
γx0x1 ðx0 − 1; x1 − 1Þ: ð7Þ

Here, Rðu; x0; x1Þ is an arbitrary function that allows for
any direct or indirect feedback control (or randomization)
via the unspecified components uðtÞ ≔ x2; x3; x4;… as
indicated by the cloud in Fig. 1, including history depend-
ence. Births are allowed to occur with an arbitrary “burst”
size b, which can be straightforwardly generalized to
arbitrary distributions of bursts for all applications we
consider (see Supplemental Material [11]). We then

formulate the results in terms of the assembly efficiency
E, i.e., the fraction of molecules of either subunit that
eventually end up in complexes

E ≔
γhx0x1i

βhx1i þ γhx0x1i
¼ 2hs01i ¼ 2hs10i: ð8Þ

The typical approach is to analyze the above reactions as
an isolated module, i.e., Eq. (7) for Rðu; x0; x1Þ ¼ const.
This leads to a simple toy model of stochastic assembly
processes that has been analyzed in many contexts
[23,24]. However, not even this toy model can be solved
analytically because nonlinear rates prohibit exact
moment closure. Analytical approaches have therefore
relied on linearizations assuming small noise, which
leads to a matrix equation [25] that in terms of the
efficiency E approximately predicts that normalized fluc-
tuations of subunit levels diverge as η11 ∼ 1=ð1 − E2Þ (see
Supplemental Material [11]). In the biologically interesting
regime of high efficiencies, the prediction thus contradicts
the approximation that made the prediction possible.
Furthermore, many biological systems are subject to
feedback loops or other stabilizing network effects, which
tend to have a particularly large effect on fluctuations
for systems operating near points of neutral stability. This
illustrates a common problem when mathematically ana-
lyzing biological networks: an interesting result is derived
by approximating a specific model, but it is unclear if the
principles identified apply to real systems.
To analyze these processes as incompletely specified

reaction networks, we instead apply Eq. (6) to the general
reaction system of Eq. (7), which leads to a set of three
equations whose solutions for η00; η11; η01 are constrained
by Eq. (3). The system is not assumed to be symmetric with
respect to control, and without approximations, it follows
that one of the variances must satisfy

ηii ≥
hsiii
hxii

1 − E=2
2ð1 − EÞ ; ð9Þ

for i ¼ 0 or 1. This hard bound also applies to the average
of the two variances and shows that in any system that
includes the reaction module of Eq. (7), fluctuations in the
pools of free subunits diverge as the efficiency approaches
100% (Fig. 1). For example, with 95% efficiency, variances
must be at least 5 time greater than for Poisson processes
with the same averages.
Similar effects may be familiar from word games like

Scrabble, where letters are drawn randomly and used to
form words: because most words consist of both vowels
and consonants, the type currently in shortage has faster
turnover, which reinforces the shortage. The frustrating
fluctuations between having mostly vowels or mostly
consonants can be reduced by forfeiting a turn and trading
in the letters for new ones or by playing words with more

FIG. 1. Efficient complex assembly implies variability. We
consider all reaction systems in which subunits X0 and X1 form
stable complexes as defined in Eq. (7), where
the cloud indicates that all system components can arbitrarily
affect the shared production rate. The inset time traces illustrate
the dramatic fluctuations in subunit levels, suggesting that small
noise approximations are inaccurate. The solid red line is the
exact lower bound on subunit fluctuations Eq. (9) as it applies to
the average of the subunit noise levels [11] . As the efficiency
approaches 100%, the subunit fluctuations diverge. We plot the
average of η00 and η11 normalized by the noise that subunits
would exhibit in the absence of feedback and complex formation.
Dots indicate simulation results for different realizations of
assembly processes across a range of parameters, feedback
functions, and embedding networks. Many systems deviate
greatly from the isolated linear noise prediction (dashed yellow
line), but no system can beat the exact bound. The simulation data
should not be interpreted in terms of density but are presented
to illustrate what is possible and show by construction that the
bound is virtually tight.
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letters of one type, like “crwth” or “eau”. Cells face the
same choice between lower efficiency and using the
surpluses for other types of complexes. Because the latter
may be difficult, many subunits in cells, whether in
anabolism [23], translation [26], antisense RNA control
[27,28], or protein complexes, may thus appear very noisy
simply as a side effect of efficient complex formation. In
fact, recent evidence [29] suggests that developmental
mechanisms can utilize the fluctuations generated by such
processes to create distinct and long-lived behaviors under
constant growth conditions.
Variability as a necessity of control.—Nongenetic

heterogeneity can reflect probabilistic processes involving
low numbers of molecules or bursts, but may also be an
unavoidable by-product of efficient processes, as high-
lighted by the stochastic assembly example above. Next,
we show that such heterogeneity can similarly be a
consequence of effective control, much like the temperature
of radiators must vary to maintain a constant room temper-
ature. In particular, we combine Eqs. (6) and (3) to exactly
quantify how the rates of self-corrective systems must vary
in response to deviations. We consider all possible net-
works in which the fluctuations of some X1 are controlled
via another component X0 defining only the following
subset of the reactions,

x0�!
Rðu;x0;x1Þ

x0 þ a x1�!
αx0 x1 þ b

x0�!
x0=τ0 x0 − 1 x1�!

x1=τ1 x1 − 1: ð10Þ

The feedback control function Rðu; x0; x1Þ is again left
completely unspecified and can depend in arbitrary ways
on X1 and X0 as well as an unspecified set of variables
uðtÞ ≔ x2; x3; x4;… that themselves can depend on X1 and
X0 (as indicated by the cloud of components in Fig. 2(a).
Such schemes arise in many contexts, and may, for
instance, describe generalized transcriptional feedback
control in genetic circuits, where the levels of a protein
(X1) are controlled by changing the production rate of its
cognate mRNA (X0), whose levels in turn set the translation
rate of proteins. Because we left the processes in the cloud
unspecified, we, e.g., allow for any systems in which
protein levels affect the transition rates between different
promoter states.
Substituting Eq. (10) into Eq. (6) leads to a system of

three equations that cannot be solved for the (co)variances
of interest. However, applying Eq. (3) to X1, X2, and
R shows that η00η11ηRR − ηRRη

2
01 − η00η

2
R1 − η11η

2
R0þ

2η01ηR0ηR1 ≥ 0, leading to a constraint on the space of
possible solutions. The resulting bound is analytical but
algebraically involved (see Supplemental Material [11]).
We here present a simpler bound, which is also proven
exactly and only marginally more conservative, for the
interesting and biologically relevant special case of τ0 ¼ τ1

ηRR
hs11i=hx1i

≥ 4

�
η11

hs11i=hx1i
− 1

�
2
�

η11
hs11i=hx1i

�
−3
: ð11Þ

This establishes the minimum variation in the rate R
required to achieve a desired reduction in X1 fluctuations,
relative to their uncontrolled noise levels, hs11i=hx1i, see
solid red line in Fig. 2(a). Equation (11) shows how very
greatly the rates must vary to suppress fluctuations in X1 as
the maximum noise suppression asymptotically depends
inversely on the third root of ηRR.
We can broaden the assumptions even further by only

specifying that a component of interest X1 undergoes first-
order degradation, while allowing for arbitrary feedback
control of the production, with rate R ¼ Rðu; x1Þ. The
above approach then immediately shows that fluctuations
in X1 levels are bounded by the variation in the production
rate according to

ηRR
hs11i=hx1i

≥
�

η11
hs11i=hx1i

− 1

�
2
�

η11
hs11i=hx1i

�
−1
: ð12Þ

FIG. 2. Effective control implies variability. (a) We consider all
possible feedback control systems in which fluctuations in com-
ponentX1 are controlled viaX0 as defined in Eq. (10). The specific
type of feedback control is left unspecified (cloud of components).
The exact bound of Eq. (11) establishes howmuch rate variability is
needed to reduce X1 fluctuations when X0 and X1 have equal
lifetimes (solid red line). We plot here the normalized standard
deviation of X1 relative to its uncontrolled noise levelsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihs11i=hx1i
p

. The dashed line indicates a marginally tighter but
algebraically more involved bound (see Supplemental Material
[11]) that is virtually indistinguishable from Eq. (10) in this range.
Dots correspond to numerical solutions to various instantiations of
the feedback systems for a range of response functions and
parameters. (b) We consider any component X1 undergoing first
order degradation while embedded in an arbitrarily complicated
control network (cloud). Equation (12) bounds the relative noise
suppression in such components in terms of the scaled variation
of their production rate R (red line). This bound is provably tight
(see Supplemental Material [11]).
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In the regime where noise suppression is significant, the
normalized standard deviations are then asymptotically
constrained by ~σ11 ~σRR ≳ hs11i=hx1i. Suppressing noise in
abundances thus requires particularly great variation in
rates when abundances are low or bursts are large. For
example, when hs11i is comparable to hx1i, reducing the
relative standard deviation in X1 to 10% requires a relative
standard deviation of R close to 1000%.
Conceptually related trade-offs are reported in control

theory, connecting performance to the cost of control [30],
but here we derived direct bounds of one in terms of the
other, without linearizations or continuity approximations,
for arbitrarily complex systems.
Equations (11) and (12) show that heterogeneity in rates,

which in turn implies heterogeneity in abundances, is a
necessary feature of control. Rates are sometimes modeled
as highly nonlinear functions of concentrations, but such
models generally condense several elementary reactions
into effective events, e.g., modeling protein production as a
function of transcription factors while ignoring mRNAs.
However, the variation in the fast variables are then still
closely connected to the variation in rates. Contrary to the
common perspective that mRNA noise necessarily begets
protein noise, a wide distribution of mRNA levels across a
population of cells is thus required to significantly reduce
spontaneous protein fluctuations by any type of feedback
mechanism that operates via transcription. This means that
molecular networks need “sacrificial” components with
large variation to ensure that other components remain
constant. Since it is rarely known which components are
controllers and which are controlled, and it is rare to
measure both in the same individual cells, the components
that experimentally appear the noisiest may in fact be the
ones that help provide the tightest control.
Conclusions.—Systems biology has tried to make sense

of the complexity of biological networks by identifying
characteristic properties of common kinetic motifs. The
challenge is that, in real cells, these are generally embedded
in larger networks such that the behavior the parts would
display in isolation can become irrelevant. However, here
we show that when further accounting for the probabilistic
nature of chemical reactions, it is still possible to identify
universal features of such motifs regardless how they affect
and are affected by the rest of the system. This can identify
broad rules for what biological systems cannot do, and
greatly reduce the number of assumptions when testing
kinetic models against data.
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