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The subtle interplay between kinetic energy, interactions, and dimensionality challenges our compre-
hension of strongly correlated physics observed, for example, in the solid state. In this quest, the Hubbard
model has emerged as a conceptually simple, yet rich model describing such physics. Here we present an
experimental determination of the equation of state of the repulsive two-dimensional Hubbard model over a
broad range of interactions 0 ≲ U=t≲ 20 and temperatures, down to kBT=t ¼ 0.63ð2Þ using high-
resolution imaging of ultracold fermionic atoms in optical lattices. We show density profiles, compress-
ibilities, and double occupancies over the whole doping range, and, hence, our results constitute
benchmarks for state-of-the-art theoretical approaches.
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Ultracold fermionic atoms have emerged as a versatile
platform to study strongly correlated spin-1=2 fermions
since they submit to a precise microscopic description and
superbly sensitive detection. This approach has shed new
light, for example, on the crossover between a Bose-
Einstein condensate (BEC) of dimers and a Bardeen-
Cooper-Schrieffer (BCS)-type superconductor as well as
on the universal physics of the unitary Fermi gas [1].
Among the remaining open questions are the properties of
strongly interacting fermions in lattices, which have begun
to be explored [2–10]. However, these investigations have
not yet achieved the same level of accuracy in determining
quantum phases and thermodynamic properties as those
without lattice [11,12]. The experimental determination of
the equation of state of the Hubbard model is of particular
importance because, even with the most advanced theo-
retical methods, strongly correlated lattice models are
notoriously hard to tackle [13,14]. Recently developed
theoretical approximations of the two-dimensional
Hubbard model [15,16] provide predictions for a range
of parameters; however, the inherent difficulty of simulat-
ing strongly correlated fermions has yet precluded the
determination of a general phase diagram, and the pre-
dictions resulting from the approximations still require
experimental verification.
The Hubbard model describes the two elementary

processes of tunneling between neighboring lattice sites
with amplitude t and on-site interaction between two
fermions of opposite spin with strength U. In a single-
band approximation the Hubbard Hamiltonian reads

H ¼ −t
X

hi;ji;σ
ðĉ†i;σ ĉj;σ þ ĉ†j;σ ĉi;σÞ þU

X

i

n̂i;↓n̂i;↑ − μ
X

i;σ

n̂i;σ:

ð1Þ

Here, ĉi;σ (ĉ
†
i;σ) denotes the annihilation (creation) operator

of a fermion on lattice site i in spin state σ ¼ f↑;↓g, the
bracket h; i denotes the restricted sum over nearest neigh-
bors, n̂i;σ ¼ ĉ†i;σ ĉi;σ is the number operator and μ is the
chemical potential. One of the key signatures of the
repulsive (U > 0) Hubbard model is the appearance of a
Mott insulating state at half filling, i.e., for n≡ ðhn̂↑iþ
hn̂↓iÞ=2 ¼ 0.5. The Mott insulator forms for U ≫ t, kBT,
where T is the temperature and kB is Boltzmann’s constant.
It is characterized by an occupation of one particle per
lattice site and a gap against density excitations of order U.
Ultracold fermionic atoms in an optical lattice realize the

Hubbard model [2,8]. In such experiments, the Hamiltonian
parameters t, U, μ, the temperature T, and the dimension-
ality are experimentally tunable, thus providing access to a
large parameter range. Previously, investigations of the
Hubbard model with ultracold atoms have mostly focused
on the Mott insulator in three dimensions by detecting the
global disappearance of doubly occupied sites [3,5,17], the
response to an external compression [4], the analysis of
reconstructed density profiles [7], and global detection of
local spin correlations [6,18]. Unlike homogeneous
solid state systems, ultracold atoms are confined by an
external trapping potential VðrÞ leading to a spatially
varying density distribution nðrÞ. Therefore, different
quantum phases can coexist in different regions of the
trap and their unique identification using global observ-
ables is often impossible. Conversely, with sufficient local
resolution, the coexistence of different phases can, in
principle, be used to sample a range of the phase diagram
in a single experimental realization. For bosonic [19–21]
and, recently, fermionic [7,9,10] atoms in optical lattices
the coexistence of different phases has been observed.
In this work we demonstrate high-resolution in situ

imaging of a spin-balanced mixture of interacting spin-1=2
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fermionic atoms in a single, two-dimensional layer of an
optical lattice [see Fig. 1(a)]. By combining radio-
frequency spectroscopy and absorption imaging we detect
the in situ density distributions of singly occupied lattice
sites (“singles”), hn̂↑ − n̂↑n̂↓i, and of doubly occupied
lattice sites (“doubles”), hn̂↑n̂↓i (for an extended descrip-
tion see the Supplemental Material [22]). This allows us to
identify the two-dimensional Mott insulator and the met-
allic state spatially resolved. Crucially, our technique gives
direct access to the equation of state [31] nðμÞ and does not
rely on density reconstruction, which can introduce numeri-
cal noise at small radii [7]. Our experiments cover the
regimes from weak (U=t≃ 0) to strong (U=t≃ 20) inter-
actions and, where available, we compare to state-of-the-art
theories.

In Fig. 1, we show examples of in situ density profiles for
different interaction strengths [Figs. 1(b)–1(d)], together
with cuts through the density distribution [Figs. 1(e)–1(g)].
For weak interactions, U=t ¼ 1.6ð2Þ, the system is metallic
with an inhomogeneous density distribution. In the
center of the trap the density is highest and we find an
accumulation of doubles. This dense core is surrounded
by a low-density ring of singles [see Fig. 1(b)]. For
intermediate interactions, U=t ¼ 8.2ð5Þ, the doubles are
suppressed by the increased interaction energy and, corre-
spondingly, the size of the cloud increases [see Fig. 1(c)].
Finally, for strong interactions, U=t ¼ 12.0ð7Þ, we do not
observe any doubles and a pronounced plateau at filling
n ¼ 0.5 forms, which signals the appearance of the
Mott insulator [see Fig. 1(d)]. Employing the precise
knowledge of the trapping potential Vðx; yÞ caused by
the envelope of the optical lattice beams (going beyond the
harmonic approximation used in Refs. [7,12,20,31], see
Supplemental Material [22]) enables us to average the
measured density along isopotential contours; see
Figs. 1(e)–1(g).
We analyze our data in the framework of the local

density approximation, which states that the local chemical
potential μðx; yÞ results from the chemical potential at the
center (x ¼ y ¼ 0) of the cloud and the trapping potential
by μðx; yÞ ¼ μð0; 0Þ − Vðx; yÞ, and that the properties of
the homogeneous system can be locally applied. The
calibration of the central chemical potential μð0; 0Þ (based
on the precise knowledge of U, see Supplemental Material
[22]) is provided by the particle-hole symmetry of the
Hubbard model, according to which the maximum of
singles occurs at half filling, n ¼ 0.5, where the chemical
potential is μðn ¼ 0.5Þ ¼ U=2. Combined with the knowl-
edge of the potential, this allows us to convert the recorded
density profiles into an equation of state nðμÞ and to
directly determine local thermodynamic properties of the
gas [12,20,31,32].
In Figure. 2(a), we show our experimental data of the

equation of state nðμÞ for different interaction strengths.
The data show the crossover from a metal for weak
interactions with a strong density variation across the
region of half filling, to a Mott insulator with a plateau
at half-filling for strong interactions. While the atom
number remains approximately constant at N ≃ 8.8ð6Þ ×
103 across different interaction strengths, there is a marked
increase of the extent of the Mott-insulating region for
larger U=t. We also note that the filling n ¼ 0.5 at a
chemical potential of μ ¼ U=2 is a fixed point of the
equation of state, as theoretically expected. We fit the
measured equation of state with data from numerical linked
cluster expansion (NLCE) calculations [15], from which
we determine the temperature of the gas. Our lowest
temperature, kBT=t ¼ 0.63ð2Þ at U=t ¼ 8.2, is already at
the limit of validity of the numerical approximation, which
is evident from the weak artificial oscillations of the
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FIG. 1. Setup and in situ density profiles. (a) Experimental
setup showing the arrangement of laser beams to create a stack of
two-dimensional Hubbard models with ultracold atoms. Singles
and doubles within a single layer are detected by combining
radio-frequency spectroscopy and absorption imaging. (b)–(d)
In situ density profiles of singles and doubles in the two-
dimensional Hubbard model for different interaction strengths.
The images are averaged over ∼35 repetitions of the experiment.
The density profiles cross over from a metallic phase at weak
interactions, U=t ¼ 1.6, to a flat-top Mott insulator without
doubles at strong interaction U=t ¼ 12.0. (e)–(g) Singles, dou-
bles, and total density data averaged over −10a ≤ x ≤ 10a [see
dashed lines in (b)] as well as evaluated along isopotential
contours of the trapping potential.
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theoretical nðμÞ data near n ¼ 0.25 and above n ¼ 0.5. We
also compare our data with the dynamical cluster approxi-
mation (DCA) [16] for U=t ¼ 8 [see inset of
Fig. 2(a)], which confirms that they fall into the temper-
ature interval 0.55 ≤ kBT=t ≤ 0.82. However, the available
DCA data are too coarsely spaced in order to fit the
temperature more accurately.
From the equation of state we compute the compress-

ibility κ ¼ ð∂n=∂μÞ shown in Fig. 2(b). The noninteracting
gas exhibits a maximum compressibility of κ ¼
0.133ð3Þt−1 at half filling n ¼ 0.5, which agrees with
the numerical simulation of the homogeneous noninteract-
ing Hubbard model at temperature kBT=t ¼ 1.4 (dashed
line). The approach from the metal to the Mott insulator is a
crossover and therefore we expect a smooth change of the
thermodynamic properties. For intermediate interactions,
U=t ¼ 8.2, we already observe a significant reduction of
the compressibility at n ¼ 0.5 and a return to a more
compressible phase at fillings n > 0.5. We compare this
compressibility with data from DCA calculations [16] and
find very good agreement. For strong interactions,
U=t ≥ 12.0, the compressibility is close to zero at half
filling. For a system without disorder, a vanishing
compressibility implies a gap against density (charge)
excitations, and hence, combined with the observation
of a plateau at half-filling, unequivocally demonstrates
the observation of the Mott insulator in two dimensions.
Furthermore, in Fig. 2(c) we show the measured doubles

fraction D ¼ 2hn̂↓n̂↑i=ðhn̂↑i þ hn̂↓iÞ ¼ hn̂↓n̂↑i=n vs fill-
ing and interaction strength. For the noninteracting gas, the
spin-up and spin-down fillings are uncorrelated; hence, the
doubles fraction simplifies to D ¼ n [dashed line in

Fig. 2(c)]. The data for the noninteracting gas agree with
this prediction. In the limit of infinitely strong repulsive
interactions, the number of doubles is completely sup-
pressed if there are more lattice sites than particles, i.e.,
D ¼ 0 for n ≤ 0.5, while for n > 0.5 the number of
doubles equals the excess of atoms above half filling,
i.e., D ¼ 2 − 1=n [dashed-dotted curve in Fig. 2(c)]. We
observe that even for U=t ¼ 8.2 the data are close to the
infinite-interaction limit. For interaction strengths above
this, the external compression provided by the trap is too
weak to observe filling n > 0.5. The inset shows the
measured doubles fraction at half filling as a function of
interaction strength U=t.
Finally, we investigate the equation of state for varying

temperature at U=t ¼ 8.2. Around this interaction strength
antiferromagnetic ordering is expected to occur at the
highest transition temperature [33] of kBT=t ∼ 0.3 and
thus knowledge of the thermodynamics will guide the
approach to this state. In order to experimentally adjust the
temperature, we heat the gas using a weak periodic
modulation of the intensity of the horizontal lattice beams
with a frequency close to twice the horizontal trapping
frequency, followed by an equilibration time (see
Supplemental Material [22]). In Fig. 3(a), we display
how nðμÞ varies with temperature. The distribution nðμÞ
gets broader and the compressibility at half-filling
increases. The latter is detailed in Fig. 3(b) which shows
how the Mott insulator melts and its compressibility
increases from κ ¼ 0.01t−1 at low temperature to κ ¼
0.03t−1 at high temperature, in agreement with NLCE
calculations (solid line). Moreover, in Fig. 3(c) we show the
doubles fraction D vs filling n for varying temperatures
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FIG. 2. Equation of state of the two-dimensional repulsive Hubbard model. Purple, U=t ¼ −0.2ð3Þ for kBT=t ¼ 1.35ð4Þ; blue,
U=t ¼ 1.6ð2Þ for kBT=t ¼ 1.19ð4Þ; green,U=t ¼ 8.2ð5Þ for kBT=t ¼ 0.63ð2Þ; yellow,U=t ¼ 12.0ð7Þ for kBT=t ¼ 0.92ð6Þ; red,U=t ¼
19.5ð1.3Þ for kBT=t ¼ 1.41ð5Þ. (a) Equation of state nðμÞ vs interaction strength. Solid lines show fits using NLCE data [15] (purple,
noninteracting Hubbard model) from which the temperature has been extracted. The inset shows the comparison with DCA data [16] for
the temperature interval 0.55 ≤ kBT=t ≤ 0.82 at U=t ¼ 8. (b) Compressibility κ vs filling. The dashed line shows the prediction of the
noninteracting Hubbard model at kBT=t ¼ 1.4 and the gray band the prediction from DCA as in (a). (c) Doubles fraction vs filling.
The theoretical predictions for the noninteracting (dashed line) and infinitely repulsive (dashed-dotted line) Hubbard model are shown.
The inset shows the behavior at n ¼ 0.5 vs interaction strength. The error bars show the standard errors.
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and find a considerable increase of doubles with temper-
ature across all fillings. Some deviations between our
experimental and the theoretical NLCE data are observed
at low filling for low temperatures even though the total
filling n is in good agreement. In Fig. 3(d) we plot the
doubles at half filling vs temperature and find that it
increases from 0.054(5) at the lowest temperatures
kBT=t ¼ 0.67ð3Þ to 0.13(3) at kBT=t ¼ 3.25ð7Þ, in
agreement with the results from NLCE [15], DCA [16],
and quantum Monte Carlo (QMC) simulations [33].
Both, the increase of compressibility and the increase in
doubles, signal the creation of thermally activated
density excitations out of the lower Hubbard band. For
the lowest temperatures our data are, within error, in
agreement with the zero-temperature extrapolation of
numerical theory calculations. This reflects that our mea-
surements have reached the temperature limit for which
density-dependent quantities are suited for studies of the
thermodynamics of the Hubbard model. Extending our
method to imaging both spin components individually
could lead towards detection of magnetic order in the
Hubbard model.
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