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We conjecture that the quantum complexity of a holographic state is dual to the action of a certain
spacetime region that we call a Wheeler-DeWitt patch. We illustrate and test the conjecture in the context of
neutral, charged, and rotating black holes in anti–de Sitter spacetime, as well as black holes perturbed with
static shells and with shock waves. This conjecture evolved from a previous conjecture that complexity is
dual to spatial volume, but appears to be a major improvement over the original. In light of our results, we
discuss the hypothesis that black holes are the fastest computers in nature.
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The interior of a black hole is the purest form of
emergent space: once the black hole has formed, the
interior grows linearly for an exponentially long time.
One of the few holographic ideas about the black hole
interior is that its growth is dual to the growth of quantum
complexity [1,2]. This duality is a conjecture but it has
passed a number of tests.
In the context of AdS=CFT duality, the conjecture has

taken a fairly concrete form: the volume of a certain
maximal spacelike slice, which extends into the black hole
interior, is proportional to the computational complexity of
the instantaneous boundary conformal field theory (CFT)
state [3]. The conjecture is an example of the proposed
connection between tensor networks and geometry—the
geometry being defined by the smallest tensor network that
prepares the state. (See also Refs. [1,2,4–8]).
For the case of the two-sided anti–de Sitter (AdS) black

hole the conjecture is schematically described by

Complexity ∼
V

GlAdS
; ð1Þ

where V is the volume of the Einstein-Rosen bridge (ERB),
lAdS is the radius of curvature of the AdS spacetime, and G
is Newton’s constant. Multiplying and dividing Eq. (1) by
lAdS suggests a new perspective on the identification of
complexity and geometry,

Complexity ∼
W

Gl2
AdS

; ð2Þ

whereW ≡ lAdSV now has units of spacetime volume and
represents the world volume of the ERB. Further noting
that 1=l2

AdS is proportional to the cosmological constant of
the AdS space inspires a new conjecture which we suspect
may have deep implications for the connection between
quantum information and gravitational dynamics. We
propose

CA conjecture : Complexity ¼ Action
πℏ

: ð3Þ

(The detailed calculations are presented in Ref. [9]). The
systems we will consider are those whose low-energy bulk
physics is described by the Einstein-Maxwell action

Action ¼ 1

16πG

Z
M

ffiffiffiffiffi
jgj

p
ðR − 2ΛÞ − 1

16π

Z
M

ffiffiffiffiffi
jgj

p
FμνFμν

þ 1

8πG

Z
∂M

ffiffiffiffiffiffi
jhj

p
K; ð4Þ

with the usual conventions [10]. The three terms in Eq. (4)
representing the action of a region M are the Einstein-
Hilbert (EH) action including a (negative) cosmological
constant, a Maxwell term, and a York-Gibbons-Hawking
(YGH) surface term constructed from the extrinsic curva-
ture tensor K.
In AdS=CFT, the spacetime region dual to the boundary

state is the “Wheeler-DeWitt (WDW) patch” whose action,
according to the conjecture, gives the complexity of the
state. The WDW patch, plotted in Fig. 1, is given by the
union of all spatial slices anchored at a given boundary time
t [or pair of times ðtL; tRÞ for the two-sided case].
Black holes are known to excel at information theoretic

tasks: they are the densest memory [11–15]; they are the
fastest scramblers [16–18]. Here we explore the possibility
that black holes also saturate a universal bound on com-
plexity growth. Computational complexity is the minimum
number of quantum gates from some universal set required
to prepare the boundary state from a reference state [19,20].
The reference state may be taken to be an unentangled state
so that all nontrivial correlations are accounted for, or
simply the initial state if we are interested only in complex-
ity growth [9]. The use of discrete gates can be justified by
lattice regulating the field theory of interest and making a
renormalization group argument [9].
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Interpreting complexity growth as computation, and
normalizing complexity using Eq. (3), we find our pro-
posals are compatible with the saturation of Lloyd’s
conjectured bound [The numerical coefficient in Eq. (5)
is not fixed by our considerations. Indeed, the normaliza-
tion of complexity depends on precise details of the
quantum circuits used to prepare the state. What our claim
means is that once the normalization is fixed by Eq. (5) for
any particular black hole, the same coefficient determines
the complexity-action (CA) relation for all black holes, and
indeed all systems. We find it interesting that by adopting
the normalization of Lloyd [21] (see also Refs. [22,23]), an
increase of complexity by one gate advances the phase of
eiAction=ℏ from 1 to −1.] on the rate of computation for a
system of energy M [21]

dComplexity
dt

≤
2M
πℏ

: ð5Þ

The bottom left panel of Fig. 1 shows the WDW patch
for a neutral two-sided black hole in AdS spacetime. There
are two boundary times, one on each side of the wormhole,
and the symmetry ensures that the action is only a function
of the sum tL þ tR. Calculating the total action of theWDW
patch requires a regulator, since the relevant integrals
diverge at the asymptotic AdS boundaries. However, the
divergences are time independent and do not affect the rate
of change of action.
We have found that the late-time rate of change of action

of the WDW patch of the neutral AdS black hole is [9]

dAction
dðtL þ tRÞ

¼ 2M: ð6Þ

This result is simple, but the derivation is nontrivial. It
involves a complicated cancellation between EH volume
term, and the YGH surface term in Eq. (4). Remarkably,
this result holds for black holes of any size—small,
intermediate, or large compared to the AdS radius—and
in any number of spacetime dimensions. In the previous
proposal of Ref. [3], the coefficient in the rate of growth of
complexity depended both on the size of the black hole and
on the number of dimensions, which made it impossible to
saturate a universal bound of the form of Eq. (5). The
universality of the rate of growth of action means that our
CA duality implies that all neutral black holes of any size
and in any number of dimensions saturate the same bound
with the same coefficient.
Additional evidence for our conjecture is provided by

black holes with conserved charge Q. With a conserved
charge, the system is more restricted and should complexity
slower. In Ref. [9] we will argue that the bound should
generalize to

dComplexity
dt

≤
2

πℏ
½ðM − μQÞ − ðM − μQÞground state�:

ð7Þ

For a given chemical potential μ, the ground state is the
state of minimum M − μQ. No new coefficient is required
in this equation—the coefficient is fixed by requiring that
Eq. (7) reduce to Eq. (5) in the limit μ → 0. For rotating
black holes the charge is the angular momentum J and the
chemical potential is the angular velocity Ω.
We will now study a number of special cases, choosing

the dimensionality to make the calculations easy. Our
conclusions should apply in any number of dimensions.
For rotating black holes in (2þ 1)-dimensional AdS

spacetime, the ground state has M; J → 0, and we have
found that the bound of Eq. (7) becomes [9]

dComplexity
dt

≤
2

πℏ
ðM −ΩJÞ ¼ 2

πℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

J2

l2
AdS

s
: ð8Þ

The rate of change of action of theWDWpatch of a rotating
black hole in 2þ 1 dimensions has also been calculated [9].
Assuming action and complexity are related by our con-
jecture, Eq. (3), the bound is again saturated. As in the
static case, the action calculation involves nontrivial can-
cellations between the EH volume term and the YGH
surface term.
For electrically charged black holes in (3þ 1)-

dimensional AdS spacetime that are much smaller than
lAdS, the minimum of M − μQ at fixed μ is at M;Q → 0.
The bound of Eq. (7) becomes

FIG. 1. The two-sided eternal AdS black hole (left) and a one-
sided AdS black hole that forms from a collapsing shockwave
(right). The two-sided AdS black hole is dual to an entangled
(thermofield double) state of two CFTs that live on the left and
right boundaries; the one-sided black hole is dual to a single CFT.
Our complexity-action conjecture relates the complexity of the
CFT state to the action of the Wheeler-DeWitt patch (shown
shaded).
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dComplexity
dt

≤
2

πℏ
ðM − μQÞ ¼ 2

πℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −

Q2

G

r
: ð9Þ

At late times, the rate of change of action of the WDW
patch of a small charged black hole in 3þ 1 dimensions
can be calculated [9] and shown, assuming our conjecture,
Eq. (3), to precisely saturate this bound. The action
calculation involves intricate cancellations, this time
between all three terms in Eq. (4).
For electrically charged black holes in (3þ 1)-

dimensional AdS spacetime that are much larger than
lAdS (shown in Fig. 2), the situation is more complicated.
Large highly charged black holes have large μ; for large
enough μ, the quantity M − μQ has a nontrivial minimum
less than zero. Naively taking this minimum to be the large
extremal black hole at fixed μ, near extremality the bound
of Eq. (7) becomes

dComplexity
dt

≤
4

πℏ
ðM−MQÞþO½ðM−MQÞ2�; ½naive�

ð10Þ

where MQ ≡ 2
3
ðG=3Þ−1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ3=lAdSÞ

p
. The bound goes lin-

early to zero at extremality. On the other hand, the late-time
rate of change of action of the WDW patch of a large RN
black hole in 3þ 1 dimensions can be calculated [9] to be

dAction
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6MQðM −MQÞ

q
þO½M −MQ�: ð11Þ

Near extremality this is much larger than Eq. (10), and so
large charged black holes apparently violate the complexity
bound. (This problem also afflicts the complexity-volume
conjecture of Ref. [3]).
However, the naive bound of Eq. (10) would not apply if

the extremal RN black hole were not the state of lowest
M − μQ at fixed μ. In theories with light charged particles,
large RN black holes grow hair. A large enough chemical
potential surrounds the black hole with a ball of charged
particles, with the ball extending a macroscopic distance
from the horizon. This hair has negative M − μQ; since it
ignored this hair, there is no reason to trust the naive
calculation deriving Eq. (10).
In order for this resolution to work, all Reissner-

Nordström-AdS-type large charged black holes that can
be embedded in UV-complete theories must develop hair.
Given the absence of a no-hair theorem this does not seem
impossible. General arguments have been given in this
direction based on the weak-gravity conjecture [24], and
several explicit examples are known, including supercon-
ducting condensation of charged fields [25–27] [such fields
are typically present in UV completions of Eq. (4)].
Turning this around, the apparent violation of the complex-
ity bound can be used as a tool to diagnose the development
of hair.
This subtlety does not arise in the other cases we have

considered. There are good reasons to be believe that
neutral, rotating, and small charged AdS black holes can be
embedded in UV-complete theories without developing
hair. The reason is supersymmetry. There are examples of
each of these kinds of black hole in which the black hole is
protected from the development of significant hair by the
BPS bound. The only case for which we expect hair to be
inevitable is the one where the naive bound fails.
Taking the example of a superconducting instability, we

may ask whether fluctuations about the true superconduct-
ing ground state obey the complexity growth bound. The
finite temperature solution corresponds to a far-from-
extremal charged black hole surrounded by a shell of
condensed charge [28]. The zero-temperature limit of this
solution has all the charge residing in the condensate shell
and has vanishing horizon area [29], and hence does not
complexify. This fact, along with the known power-law
heat capacity of the hairy black hole [28] imply that the
complexity growth bound is qualitatively obeyed (see also
the discussion of static shells below).
A strong test of the relationship between geometry and

complexity is provided by perturbing the black hole. In [30]
(see also Refs. [7,31–34]), the field theory was perturbed
with a small thermal-scale operator. In the boundary, this
small perturbation grows due to the butterfly effect, and
increases the complexity. In the bulk, the perturbation
gives rise to an ingoing null shock wave that increases the
volume and action of the Einstein-Rosen bridge. Both
the complexity-volume duality of Refs. [3,7] and the

FIG. 2. For a charged AdS black hole, the Wheeler-DeWitt
patch does not extend all the way to the singularity, and instead
ends when the ingoing light sheets self-intersect just outside the
inner horizon at r−.
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complexity-action duality of this Letter successfully have
these two growths match.
The match is remarkably detailed. Not only does the bulk

shock wave calculation successfully reproduce the chaotic
growth of complexity in the boundary state, it also
reproduces the partial cancellation that occurs during the
time it takes the perturbation to spread over the whole
system (the “scrambling time” [16,17]). That the action
calculation is sensitive to this cancellation is evidence that it
counts the gates of the minimal circuit.
The shock wave tests can be made even more stringent.

As was shown for the spatial volume of the ERB in
Refs. [3,7], and as will be shown for its action in
Ref. [9], we can add more than one shock wave [31]
in more than one location [7], and the dual calculations
continue to match. (The action calculations that will be
presented in Ref. [9] are much easier than the volume
calculations of Refs. [3,7], since there are now no differ-
ential equations to be solved.) These multiple shock wave
states provide detailed evidence for the duality between
complexity and geometry because the correspondence
continues for all possible times and locations of the
perturbations.
Another test of the relationship between complexity and

geometry is provided by a different kind of perturbation.
Rather than sending a null shockwave into the black hole,
we will instead surround the black hole with a static shell
held aloft by compressive strength. In calculating the rate of
change of action, the shell itself does not contribute since it
is static. The only effect is indirect—the shell places the
black hole in a gravitational well and so gravitational time
dilation slows the black hole’s rate of action growth. This
action calculation fits with our complexity expectation.
First, not all energy computes—the static shell is computa-
tionally inert. Second, gravitational time dilation makes
computers placed in gravitational wells run slow.
(One way of understanding superconducting black holes

is as nonextremal black holes surrounded by a computa-
tionally inert superconducting shell).
We have introduced a new conjecture in this Letter: that

the complexity of a holographic state is dual to the action of
the associated Wheeler-DeWitt patch. Although motivated
by the older complexity-volume duality of Ref. [3], the new
conjecture subsumes the old. One may ask in what way is it
an improvement?
The original conjecture had some ad hoc features, most

notably the introduction of a new length scale with each
new configuration to be studied. For large black holes in a
given AdS background the length scale was chosen to
match the AdS radius of curvature. For small AdS black
holes or black holes in flat spacetime the scale was the
Schwarzschild radius. No such arbitrary scale is needed in
the duality relating complexity and action.
The complexity-action duality has been subjected to a

number of nontrivial tests. In Ref. [9] we will subject it to a

broader battery of tests, perform more detailed calculations,
and discuss the connection with tensor networks. A number
of open questions remain. We would like to better under-
stand the implications of the conjecture not just for the rate
of change of complexity, as we have in this Letter, but for
the ground state complexity already present at t ¼ 0.
Finally, as a means of testing our complexity bound, we
would like to extend our proposal to less strongly coupled
boundary theories; this will introduce higher-derivative
terms in the bulk action, and we will need to be careful
to understand their contribution near the singularity.
The coarse-grained geometry of the Einstein-Rosen

bridge is given by the circuit (or tensor network) of least
complexity that connects the two sides. One wonders if
there is a connection between the principle of least action
and this principle of least computation.
The complexity-action conjecture relates the geometry of

the bulk to the computational complexity of the boundary.
The CA duality provides a tool for diagnosing when
horizons are transparent [35], and also for diagnosing
when the state does not belong to a consistent truncation
of a UV-complete theory. The WDW patch is the natural
bulk spacetime region to associate with a boundary state,
and is robust against small perturbations. The action is a
natural quantity associated with the Wheeler-DeWitt patch
that generalizes to higher dimensions, to more general
theories, and to more complicated semiclassical states,
without having to make arbitrary choices. Using CA
duality, we saw that neutral AdS black holes in any number
of dimensions and of any size all saturate the same bound
on the rate of computation with the same coefficient. (The
same coefficient also applies to charged and rotating
black holes).
If our complexity-action conjecture is correct, then black

holes saturate Lloyd’s proposed limit on the rate of
computation [21]. CA duality thus provides a natural
framework in which to think about black holes as the
fastest computers in nature.
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