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We consider a weakly interacting quantum spin chain with random local interactions. We prove that
many-body localization follows from a physically reasonable assumption that limits the extent of level
attraction in the statistics of eigenvalues. In a Kolmogorov-Arnold-Moser-style construction, a sequence of
local unitary transformations is used to diagonalize the Hamiltonian by deforming the initial tensor-product
basis into a complete set of exact many-body eigenfunctions.
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In the past few years, there has been a surge of interest in
the phenomenon of many-body localization (MBL). In the
well-studied Anderson tight-binding model [1] a particle
moving in a sufficiently strong random potential is local-
ized; eigenstates decay exponentially away from localiza-
tion centers and transport is absent. A number of authors
have argued that localization persists in the presence of
weak interparticle interactions [2–8]. In particular, the
detailed perturbative analysis of [7] provided strong evi-
dence for MBL. More recently, numerical studies on one-
dimensional spin systems and particle systems [9–11] gave
evidence for a transition from a thermalized phase to a
many-body localized phase, as the strength of the disorder
increases. See [12] for a review of recent work on MBL.
On a theoretical level, it is important to get past

perturbative analysis, as rare regions with weak disorder
(Griffiths regions [13]) have the potential to spoil locali-
zation. Rigorous results on localization in many-body
systems include a proof of dynamical localization for an
isotropic random spin chain, using the Jordan-Wigner
transformation to reduce the problem to an equivalent
one-body Hamiltonian [14]. Localization in the ground
state of the interacting Aubry-André model was established
in [15].
In this Letter we establish rigorously that for a one-

dimensional disordered spin chain, MBL follows from a
physically reasonable assumption on level statistics. We
consider a random field, random transverse field, random
exchange Ising model on an interval Λ ¼ ½−K;K0�∩Z,

H ¼
XK0

i¼−K
hiS

z
i þ

XK0

i¼−K
γiSxi þ

XK0

i¼−K−1
JiS

z
iS

z
iþ1: ð1Þ

Here, Sx;zi are Pauli matrices, with Szi ≡ 1 for i∉Λ. We take
γi ¼ γΓi with γ small. Thus, the Hamiltonian is close to one
that is diagonal in the basis given by tensor products of Szi
eigenstates. We take the random variables hi, Γi, Ji to be
independent and bounded, with bounded probability den-
sities. This is a variant of the model considered in [10]. We
need to make an assumption of limited level attraction

(LLA) for the spectrum of H, for some values of ν > 0
and C < ∞.
Assumption LLAðν; CÞ. Consider the Hamiltonian H in

boxes of size n. Its eigenvalues satisfy

P

�
min
α≠β

jEα − Eβj < δ

�
≤ δνCn; ð2Þ

for all δ > 0 and all n.
Physically, this is a mild assumption specifying that with

high probability the minimum level spacing should be no
smaller than some exponential in the volume. Note that
random matrices normally have either neutral statistics
(ν ¼ 1, e.g., Poisson) or repulsive ones (ν > 1, e.g.,
Gaussian orthogonal ensemble). Our analysis works even
for attractive statistics, i.e., 0 < ν < 1. Mathematically,
techniques to prove estimates such as (2) are not yet
available for many-body systems, but a promising approach
is available for single-body Hamiltonians [16].
We give an explicit construction of a sequence of unitary

rotations that diagonalizes the Hamiltonian. Each rotation
is generated by quasilocal operators. This means that a
rotation generator that involves l spins is exponentially
small in l, with high probability. Resonant regions where
the required rotations are far from the identity are dilute; the
probability that two sites a distance D apart are in the same
resonant region decays faster than any power of D. These
rotations define a way to deform the original basis states
[tensor products of (1,0) or (0,1) at each site] into the exact
eigenstates. Away from resonant regions, each eigenstate
resembles the basis state it came from, and classical spin
configurations σ ¼ fσig ∈ f−1; 1gjΛj can be used as eigen-
state labels. This is made evident by the following result:
Theorem.—Let ν, C be fixed. There exists a κ > 0 such

that for γ sufficiently small, LLAðν; CÞ implies the follow-
ing estimates:

E avαjhSz0iαj ¼ 1 −OðγκÞ; ð3Þ
where E denotes the disorder average, avα denotes an
average over α, and h·iα denotes the expectation in the
eigenstate α. For any i ≠ j,
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max
α

jhOi;Ojiαj ≤ γji−jj=3; ð4Þ

with probability 1 − ðγκÞ1þðlog ji−jjÞ2. Here, hOi;Ojiα≡
hOiOjiα − hOiiαhOjiα, withOi being any operator formed
from products of Sxi0 or S

z
i0, for i

0 near i. All bounds are
uniform in Λ.
We may take avα to be any normalized average over the

2n values of α (for a box of size n), e.g., uniform weights
(infinite temperature) or ðconstÞ expð−βEαÞ. We see that
with high probability, most states have the property that the
expectation of Sz0 is close to þ1 or −1, just like the basis
vectors. The spins are effectively frozen in place in each
eigenstate. This would contrast with a thermalized phase,
wherein states resemble thermal ensembles (a consequence
of the eigenstate thermalization hypothesis [17–19]). At
infinite temperature, thermalization implies that eigenstate
expectations of Sz0 go to 0 in the infinite volume limit. Thus,
the bound (3) implies a failure of thermalization, a key
feature of the MBL phase.
In the course of the proof, we construct a sequence of

rotations (or changes of basis) that gives an explicit
quasilocal deformation between basis vectors and the exact
eigenstates. This is an important feature of the fully many-
body localized phase [11,20]; the property is essentially
equivalent to the existence of a complete set of quasilocal
integrals of motion [21–23]. It is the many-body analog of
the fact that one can deform (or label) single-particle
eigenstates by their localization centers [24].
Proof of theorem.—We present the key elements of the

proof; more technical aspects are published separately [20].
We obtain a complete diagonalization of H by successively
eliminating low-order off-diagonal terms as in Newton’s
method. The process runs on a sequence of length scales
Lk ¼ ð15

8
Þk, with off-diagonal elements of order γm, m ∈

½Lk; Lkþ1Þ eliminated in the kth step. The orthogonal
rotations that accomplish this can bewritten as a convergent
graphical expansion, provided nonresonant conditions
are satisfied. Resonant regions are diagonalized as blocks
in quasidegenerate perturbation theory. As in the
Kolmogorov-Arnold-Moser (KAM) theorem constructing
integrals of motion in Hamiltonian dynamical systems, one
needs to control the measure of resonant sets where
perturbation arguments break down. See [24] for an
application of these ideas to the Anderson model. KAM
ideas have been useful in quantum models with quasiperi-
odic potentials [15,25–27].
We begin by outlining the first step of the procedure

(k ¼ 1).
Resonances.—Perturbation theory works if there are

gaps between eigenvalues. Initially, the only off-diagonal
term is γiSxi , which is local. We only need to worry about
single-flip resonances (for the moment). Let the spin
configuration σðiÞ be equal to σ with the spin at i flipped.
The associated change in energy is

ΔEi ≡ EðσÞ − EðσðiÞÞ ¼ 2σiðhi þ Jiσiþ1 þ Ji−1σi−1Þ:
ð5Þ

We say that the site i is resonant if jΔEij < ε≡ γ1=20 for at
least one choice of σi−1; σiþ1. Then for nonresonant sites
the ratio γi=ΔEi is ≤ γ19=20. A site is resonant with
probability ∼4ε. Hence resonant sites form a dilute set
where perturbation theory breaks down.
Perturbation theory.—Let H ¼ H0 þ J with H0 being

diagonal and J off diagonal. Put J ¼ Jres þ Jper, where
Jres contains terms JðiÞ≡ γiSxi with i being resonant, and
Jper contains the rest. Then define an antisymmetric matrix

A≡ X

nonresonant i

AðiÞ with AðiÞσσðiÞ ¼
JðiÞσσðiÞ
Eσ − EσðiÞ

: ð6Þ

First-order perturbation theory can be implemented by
using Ω ¼ e−A for a basis change. This leads to a
renormalized Hamiltonian,

Hð1Þ ¼ e−AHeA: ð7Þ

By construction (first-order perturbation theory),

½A;H0� ¼ −Jper; ð8Þ

which cancels all but the resonant terms to leading order,

Hð1Þ ¼ eAHe−A ¼ H þ ½A;H� þ ½A; ½A;H��
2!

þ…

¼ H0 þ Jres þ
X∞

n¼1

ðadAÞn
n!

�
n

nþ 1
Jper þ Jres

�

≡H0 þ Jres þ Jð1Þ; ð9Þ

where ðadAÞB≡ ½A; B�. A similar transformation was used
in [28].
Properties of the new Hamiltonian.—After the change of

basis, Jper is gone, while Jres remains. The new interaction
Jð1Þ is quadratic and higher order in γ. Note that AðiÞ
commutes with AðjÞ or JðjÞ if ji − jj > 1. Thus, we
preserve quasilocality of Jð1Þ; it can be written asP

gJ
ð1ÞðgÞ, where g is a sum of connected graphs involving

spin flips JðiÞ and associated energy denominators as in
(6). Specifically, a graph is determined by a sequence of
sites i0;…; in such that distðip; fi0;…; 1p−1gÞ ≤ 1 for
1 ≤ p ≤ n; this specifies a nonvanishing term in
ðadAÞnJ that operates on the spins at those sites. A graph
involving l spin flips has l − 1 energy denominators and is
bounded by γðγ=εÞl−1.
We define resonant blocks by taking connected compo-

nents of the set of sites belonging to resonant graphs. We
perform exact rotationsO in small, isolated resonant blocks
to diagonalize the Hamiltonian there. This paves the way
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for reintegrating such regions into the perturbative frame-
work in subsequent steps.
Expectations in approximate eigenstates.—Sz0 is diago-

nal in the σ basis, so ðSz0Þσ ~σ ¼ σ0δσ0 ~σ0 . We prove a version
of (4) for the eigenfunctions as approximated so far (that is,
for the columns of ΩO),

E avα

����
���
X

σ

ðOtrΩtrÞασσ0ðΩOÞσα
��� − 1

���� ≤ OðεÞ: ð10Þ

To handle resonances, one may throw out a set of small
probabilityOðεÞ where the origin is in a resonant block and
the rotationO acts nontrivially. Then the rotation Ω is close
to the identity. Hence the two terms cancel except for
interactions involving AðiÞ, which is bounded by γ=ε. To
obtain the theorem, we need to prove this for the complete
diagonalization of H. Similar methods should lead to a
uniform bound on the entanglement entropy of a subsys-
tem, because the only contributions come from rotations
straddling the boundary.
Multiscale iteration.—We continue the process on a

sequence of length scales Lk ¼ ð15
8
Þk, so that off-diagonal

elements of HðkÞ are of the order of γLk . In each step, the
diagonal elements of HðkÞ are renormalized by interactions
up to the kth scale; they are denoted EðkÞ

σ . We say that g is
resonant if

Aðkþ1Þ
σ ~σ ðgÞ≡ JðkÞσ ~σ ðgÞ

EðkÞ
σ − EðkÞ

~σ

ð11Þ

is greater than ðγ=εÞjgj in magnitude, where jgj denotes the
number of spin flips in g; we have jgj ≥ Lk in the kth step
(as in Newton’s method, the procedure has a convergence
rate that is close to quadratic). For nonresonant graphs, we
may use (11) to generate the next rotation. Then the next
interaction Jðkþ1Þ is again given by a sum of graphsP

gJ
ðkþ1ÞðgÞ. This is a recursive construction; repeated

application of the ad expansion (9) leads to graphs g that are
given by a sequence of graphs from the previous scale. The
precise definition of g is somewhat involved (see
Appendix 1 of [20]), but as in the first step, we may use
the condition of nonvanishing commutators to enforce
connectivity. Then if one unwraps the expansions, one
obtains a sequence of spin flips at a set of sites that is
nearest-neighbor connected. Each subgraph from an earlier
scale comes with an energy denominator representing the
result of flipping the spins of the subgraph; there are a total
of jgj − 1 energy denominators.
Let us discuss a key estimate giving control over the

probability of resonances. For the moment we make some
simplifying assumptions: (a) The graph g involves spin
flips in regions not previously found to be resonant; (b) g
does not flip any spin more than once; and (c) the ad
expansion (9) is developed only up to order n0 on each
scale (this avoids complications with factorials in n).

We need to maintain uniform exponential decay on the
probability that g is resonant. One cannot simply bound
denominators from below, as was done in the first step.
There is a mixture of energy denominators from different
scales, and combining lower bounds OðεLjÞ for denomi-
nators on scales j ≤ k causes the rate of decay for graphs to
degenerate as k increases. Instead, we prove that each graph
g obeys a fractional moment bound with s ¼ 2

7
when

averaged over the disorder,

EjAðkÞ
σ ~σ ðgÞjs ≤ γsjgjE

Y

τ~τ∈g
jEðjÞ

τ − EðjÞ
~τ j−s ≤ ðcγÞsjgj: ð12Þ

Here, the constant c does not depend on k. By (a), energy
denominators EðjÞ

τ − EðjÞ
~τ are given by a sum of �2hi over

the sites i flipped in the transition τ → ~τ (up to corrections
of order γ). By (b), each energy denominator contains an
independent integration variable hi. Boundedness of the
density for hi implies that EjΔEj−s is bounded, and (12)
follows. Then Markov’s inequality implies that

P(jAðkÞ
σ ~σ ðgÞj > ðγ=εÞjgj) ≤ ðcεÞsjgj: ð13Þ

This procedure estimates all of the denominators of g
together; it yields the desired exponential bound on the
rotation generator with probability 1 − ðcεÞsjgj.
The set of sites that belong to resonant graphs g is

decomposed into connected components. The result is the
set of resonant blocks in the kth step. The number of graphs
containing a given site is exponential in jgj, so (13) allows
us to sum over collections of graphs connecting one site to
another. We obtain an exponentially decaying connectivity
function, demonstrating that resonant blocks do not
percolate.
In order to relax simplifying assumption (b), we consider

graphs with a significant fraction of flips appearing at
previously flipped sites. Such graphs no longer have the
independent denominator property that was needed to
obtain (13). We resum collections of graphs for which
the interval spanned by g is smaller than 7

8
jgj. The shortened

span implies an increased rate of decay with distance, so
inductive bounds from previous steps are sufficient, and
probabilistic estimates like (13) are not needed. For the
remaining “straight” graphs, most of the denominators are
independent, and we obtain a bound similar to (13) on the
probability of resonance. To relax assumption (c), we need
to incorporate the available 1=n! from the ad expansion into
both sides of (13) so as to allow summation over graphs of
arbitrarily high order at a given scale k; see [20] for details.
In order to completely diagonalize H, it is important to

relax assumption (a) by considering graphs that involve
resonant blocks. We know that resonant blocks are
dilute, but their interactions could lead to long-range
effects. A resonant block B with diameter d may have
level spacings of order 2−d. In step k we work with
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interactions of order γLk, so we are able to resolve energy
differences of order εLk. Therefore, we need to wait until Lk
becomes comparable to d before considering interactions
involving B. But larger interaction terms of order γLj from
steps j < k still connect B to its immediate neighborhood.
To get rid of these, we define a fattened block B̄ by adding
an Lk neighborhood to B. Any graphs g connecting B to B̄c

(the complement of B̄) must have jgj ≥ Lk. We separate the
interaction terms of HðkÞ ¼ H0 þ JðkÞ into two parts: JðkÞint

(involving terms internal to B̄) and JðkÞext (the rest). LetOðkÞ

be the matrix that diagonalizes H0 þ JðkÞint, and use it to
rotate HðkÞ. In the new basis, we have an equivalent system
with 2jB̄j eigenstates of B̄ interacting with B̄c through terms
of order γLk or smaller. In effect, B̄ represents a “fat” site
with a spin variable labeling the 2jB̄j basis states. We call
this variable the metaspin for B̄. Henceforth, eigenstates are
labeled by spin variables σi ¼ �1 away from resonant
blocks, and metaspin variables in blocks B̄. This is
necessary because when a rotation is far from the identity,
there is no natural way to assign eigenstates to the original
basis states.
In the new basis, we may rotate away interactions of

order γLk and higher as discussed above. But to control the
probability that a graph involving B̄ is resonant, we need
estimates like (13), which depend on the finiteness of
EjΔEj−s. This is where we need the assumption LLAðν; CÞ.
By construction, the dependence of ΔE for any level
change in B̄ depends on the state in B̄c only out to a
distance comparable to Lk. Therefore, we can approximate
ΔE within an error γOðLkÞ by examining the equivalent
transition for the Hamiltonian in an Lk neighborhood of B̄.
Using LLAðν; CÞ for a box of size n comparable to Lk, we
have that with high probability the minimum level spacing
is at least ~C−Lk for some ~C < ∞. Furthermore, since all
three terms in the Hamiltonian (1) are random, the radial
degree of freedom in the variables fhi;Γi; Jig scales all
energy differences equally. Hence as long as there is a
minimum level spacing, we can control the probability that
a transition energy ΔE is resonant with a given nearby
transition—even in the case of a block-block interaction as
in Fig. 1. An energy differenceΔE of B̄moves linearly with
the radial variable, so as before the fractional moment
EjΔEj−s is bounded (in this case the bound is ~CLk).
We see that a resonant region of size d requires a buffer

zone of width comparable to d to enable it to become
disentangled from neighboring degrees of freedom.
Consequently, one should unite two such neighboring
blocks into one if they are within a distance d. This leads

to hierarchically organized, loosely connected resonant
regions whose connectivity function decays as a stretched
exponential. This idea is explored in a simple theory of the
MBL transition in [29]. In dimensions greater than 1, the
volume of B̄ may be substantially larger than d.
Consequently, the level spacing in B̄ may become smaller
than the size of the interaction terms, and our procedure
breaks down.
Resonant blocks create gaps in decay for graphs passing

through them. We need to ensure that there is minimal loss
in decay from collections of resonant blocks on all scales.
We want the usual metric in Z to be comparable to the one
where blocks are contracted to points. Then graphs decay
exponentially in the usual metric, and those that traverse the
buffer zone of B are small enough to control the exponen-
tial number of states in B̄. To this end, we use a more
generous notion of connectivity wherein a block of volume
V (potentially much smaller than the diameter) is united
with similar or larger blocks up to a distance exp½OðV1=2Þ�
away. Then the separation between blocks grows much
faster than their diameter, and the fraction of distance lost to
blocks is summable and small. A similar construction was
used in [30]. This rule implies that block volumes scale up
with their diameters at least asOðj log dj2Þ, which leads to a
connectivity function that decays as ðγκÞ1þðlog ji−jjÞ2 , as in
the theorem.
To complete the proof of the theorem, let k tend to

infinity. This eliminates all off-diagonal entries of the
Hamiltonian. All rotations are close to the identity, except
in resonant blocks. As in the discussion of (10), hSz0iα is
close to �1 except for a set of measure OðεÞ ¼ Oðγ1=20Þ,
and (3) follows. An eigenstate correlation as in (4) involves
graphs extending from i to j. If no more than half the
distance from i to j is covered by resonant blocks, then we
obtain exponential decay as in (4). Otherwise, we have an
event whose probability is dominated by the block con-
nectivity function, which decays as indicated above (faster
than any power of 1=ji − jj).
In summary, we have described a multiscale approach to

the problem of deforming the tensor-product basis into the
exact eigenfunctions. An assumption on level spacing
allows probabilistic control over cases where perturbation
theory is not well behaved; as a result we show that
resonant regions fail to percolate, and MBL follows. We
give convergent expansions for eigenvalues and eigenfunc-
tions demonstrating closeness to the states from whence
they came.
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