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A power series approximation for the correlation kernel of time-dependent density-functional theory is
presented. Using this approximation in the adiabatic-connection fluctuation-dissipation (ACFD) theorem
leads to a new family of Kohn-Sham methods. The new methods yield reaction energies and barriers of
unprecedented accuracy and enable a treatment of static (strong) correlation with an accuracy of high-level
multireference configuration interaction methods but are single-reference methods allowing for a black-
box-like handling of static correlation. The new methods exhibit a better scaling of the computational effort
with the system size than rivaling wave-function-based electronic structure methods. Moreover, the new
methods do not suffer from the problem of singularities in response functions plaguing previous ACFD
methods and therefore are applicable to any type of electronic system.
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A long-standing goal in density-functional theory (DFT)
and electronic structure theory in general is the development
of methods than can treat any type of electronic system
including those characterized by noncovalent interactions
or by static (strong) correlation with high accuracy yet
manageable computational effort. Here, we present a family
of Kohn-Sham (KS) methods that reaches this goal. The
methods exhibit for reaction energies and barriers of mole-
cules an accuracy that is unprecedented in DFTand rivals that
of computationally more demanding high-level quantum
chemistry methods. Furthermore, the new methods describe
well noncovalent interactions, likevan derWaals interactions.
Concerning static correlation, the KS formalism of DFT, in
principle, enables its efficient treatment on the basis of a
single-reference wave function, the KS determinant, despite
the fact that the real physical wave function in cases of static
correlation is of multireference character. So far, no KS
method could live up to this promise. The methods presented
here, however, enable exactly this.
KS methods treating the correlation energy via the

adiabatic-connection fluctuation-dissipation (ACFD) theo-
rem [1,2] in recent years have proven to represent a highly
promising novel generation of DFT methods [3–12].
In ACFD methods, all parts of the electronic energy except
the correlation energy are calculated exactly. This is a
characteristic ACFD methods share with wave-function-
based electronic structure methods like the hierarchy of
coupled-clustermethods [13,14]. TheKS correlation energy
is calculated via the ACFD theorem according to

Ec ¼
−1
2π

Z
∞

0

dω
Z

1

0

dαTrf½XαðiωÞ −X0ðiωÞ�FHg: ð1Þ

In Eq. (1), X0 denotes the dynamic, i.e., frequency-
dependent, density-density (potential-density) KS response

matrix that is the basis set representation of the response
function of the KS model system of hypothetical non-
interacting electrons. Xα stands for the dynamic density-
density response matrix of a corresponding electronic
system with electrons interacting via an electron-electron
interaction scaled by the coupling constant 0 ≤ α ≤ 1. The
matrix Xα turns into the KS response matrix X0 for α ¼ 0
and into the response function of the real electron system
with fully interacting electrons for α ¼ 1. The electronic
systems for all values of the coupling constant are uniquely
defined via the Hohenberg-Kohn theorem by the require-
ment to have the same ground state electron density. All
responsematrices are evaluated for complex frequencies iω.
The matrix FH represents the Coulomb interaction in the

same auxiliary basis set that is used for the construction of
X0 and Xα. This auxiliary basis set is required in addition
to the basis set to represent one-electron states, i.e., orbitals.
For notational simplicity, the auxiliary basis set is assumed
to be orthonormal here; for nonorthonormal auxiliary basis
sets, additional overlap matrices occur. The introduction
and construction of auxiliary basis sets is described in detail
in the Supplemental Material (SM) [15] and in Ref. [8].
While the KS response matrix X0 can be straightfor-

wardly constructed from the KS orbitals and eigenvalues
(see the SM), the response matrices Xα are accessible via
time-dependent density-functional theory in the response
regime [33–35] according to

XαðiωÞ ¼ ½1 −X0ðiωÞFα
HxcðiωÞ�−1X0ðiωÞ: ð2Þ

In Eq. (2),Fα
Hxc represents the sum of the Hartree kernel plus

the dynamic exchange-correlation kernel, the frequency-
dependent functional derivative of the exchange-correlation
potential with respect to the electron density.
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Equations (1) and (2) are exact. However, the exchange-
correlation kernel is not known exactly, except for special
situations [36]. Therefore, at this point, approximations
have to be invoked. In most ACFD methods, the exchange-
correlation kernel is completely neglected; this amounts to
the direct random phase approximation (dRPA). The dRPA,
in contrast to conventional DFT methods employing
functionals within the local density or generalized gradient
approximation, is able to describe van der Waals inter-
actions; for reactions energies, however, results typically
are only moderately better than those of conventional DFT
methods, and atomization and total energies are very poor
[7,8,37]. Moreover, the dRPA suffers from the fundamental
problem that it is not self-interaction free and, e.g., yields
an unphysical correlation energy in one-electron systems.
An ACFD method completely free of self-interactions

results if the frequency-dependent exchange kernel is
fully taken into account in addition to the Hartree kernel
[8,9,12,38–41]. The exchange kernel itself is not known.
However, the sum FHx of the Hartree plus the exchange
kernel obeys an integral equation, which turns into the
matrix equation

X0FHxX0 ¼ HHx ð3Þ

in a basis set representation. Starting with Eq. (3), we
suppress the frequency argument iω for notational clarity
unless it is indispensable. The matrix HHx represents a
function hHxðiω; r; r0Þ which is known explicitly in terms
of KS orbitals and eigenvalues and thus is accessible; see
Refs. [39–41].
Multiplication of Eq. (3) from the right and from the left

with L−1 ¼ ð−X0Þ−1=2, the inverse of the KS response
matrix, yields

LFHxL ¼ L−1HHxL−1: ð4Þ

Because all response functions occurring here are
Hermitian and negative definite, the square root L of −X0

is well defined. Inserting Eq. (4) into Eq. (2) yields

Xα ¼ L½−1 − αL−1HHxL−1�−1L
¼ LU½−1 − ατ�−1U†L; ð5Þ

see the SM for details. In the second line of Eq. (5), the
spectral representation

L−1HHxL−1 ¼ UτU† ð6Þ

was used with the diagonal matrix τ containing the
eigenvalues and with the unitary matrix U containing the
eigenvectors of L−1HHxL−1.
If expression (5) for the response matrix Xα is inserted

into the ACFD theorem (7), then the correlation energy
assumes the form [8]

Ec ¼
−1
2π

Z
∞

0

dω
Z

1

0

dαTrf½LðiωÞUðiωÞ

× ð½−1 − ατðiωÞ�−1 þ 1ÞU†ðiωÞLðiωÞ�FHg: ð7Þ

Expression (7) can be readily evaluated for any given set of
KS orbitals and eigenvalues. The resulting ACFD method
[8] is denoted as ACFD½Hx�. In this notation, the kernel
employed in the ACFD theorem is abbreviated in square
brackets. The dRPA in this notation reads as ACFD½H�.
The ACFD½Hx� approach not only is free of unphysical
self-interactions, but it furthermore describes reaction
energies and van der Waals interactions more accurately
compared to the dRPA [8]. Moreover, the ACFD½Hx�
approach yields a qualitatively correct, although not highly
accurate, dissociation limit when breaking bonds including
multiple bonds without the necessity to artificially break
spin symmetry [38]; see Fig. 1 for the example of the
dissociation of the N2 molecule.
The ACFD½Hx� dissociation curve of N2 (see Fig. 1) at

medium bond lengths from 3.0–4.5 Bohr exhibits unphys-
ical features pointing to a fundamental shortcoming of
the ACFD½Hx� approach, which becomes apparent when
analyzing expression (5) for the response matrix Xα [42].
The eigenvalues τ of L−1HHxL−1 can assume negative
numbers below −1. For equilibrium geometries, this seems
not to happen; however, when stretching bonds, it does. If
τ < −1, then −1 − ατ ¼ 0 for a certain value of 0 ≤ α ≤ 1,
and −1 − ατ > 0 if α is larger than this value. For
−1 − ατ ¼ 0, the diagonal matrix ½−1 − ατ�−1 and thus
the response matrix Xα become singular; whenever
−1 − ατ > 0, an eigenvalue of ½−1 − ατ�−1 becomes pos-
itive, and subsequently, the response matrixXα is no longer
negative definite, which is unphysical; see Fig. 2. This
means the ACFD½Hx� approach is not applicable to some
electronic structures. This shortcoming has to be caused by
the neglect of the correlation kernel in the construction of
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FIG. 1. Dissociation curves of N2 for different methods; for the
nomenclature, see the text later on.
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the response matrixXα [see Eq. (5)] because this is the only
approximation invoked in the approach.
In this work, we present a power series approximation

(PSA) for the correlation kernel that guarantees that all
involved response matrices are negative definite. In this
way, a generally applicable method is obtained. Taking into
account the correlation kernel via the PSA introduced here,
moreover, leads to much higher accuracies while not
increasing the computational effort significantly.
In perturbation theory along the adiabatic connection,

the correlation energy and potential are expanded in Taylor
series with respect to the coupling constant α [43,44]. It was
shown that the leading term in these Taylor series is of
quadratic order in α. The Taylor series in the correlation
energy and potential implies a corresponding Taylor series
for the correlation kernel

Fα
c ¼

X∞
n¼2

αnFðnÞ
c : ð8Þ

Next, we define a matrix Hα
c ¼ X0Fα

cX0. With the Taylor
series (8), we obtain

L−1Hα
cL−1 ¼

X∞
n¼2

αnL−1HðnÞ
c L−1 ð9Þ

with the matrices HðnÞ
c ¼ X0F

ðnÞ
c X0.

The matrices HðnÞ
c are not known exactly; we therefore

invoke the approximation

L−1HðnÞ
c L−1 ≈ βn½L−1HHxL−1�n; ð10Þ

the PSA. With the spectral representation (6) of
L−1HHxL−1, we obtain the expression

Xα ≈LU

�
−1 − ατ −

X∞
n

βnα
nτn

�−1
U†L ð11Þ

for the response matrix Xα. In Eq. (11), the correlation
kernel, more precisely, LFα

cL ¼ L−1Hα
cL−1, is approxi-

mated by the power series U½P∞
n βnα

nτn�U†. Inserting
Eq. (11) in the ACFD theorem (1) yields an expression for
the correlation energy that has the same basic form as the
ACFD½Hx� expression (7) and can be evaluated with only
negligible additional computational effort. The only differ-
ence is that the diagonal matrix ½−1 − ατ�−1 in Eq. (7) is
replaced by ½−1 − ατ −

P∞
n βnα

nτn�−1. The factors βn in
Eqs. (10) and (11) are parameters that are undetermined so
far. As a first step, we here reduce the PSA to the leading
three terms and have determined the three parameters β2,
β3, and β4 such that the error in the reaction energies for a
training set of 24 reactions of small molecules (see Table 1
of the SM) is minimized.
As is common for ACFD methods, we carried out non-

self-consistent calculations; i.e., we determined the orbitals
and eigenvalues by some self-consistent Kohn-Sham
procedures and then evaluated the total electronic energy
with the exact exchange energy and the correlation energy
from the ACFD theorem. We here use exact exchange-only
(EXX) calculations [45–49] or self-consistent dRPA
calculations to determine the KS orbitals and eigenvalues.
Self-consistent dRPA calculations can be carried out in
several ways [37,50,51]; we used the method of Ref. [37].
The resulting approaches are denoted as ACFD½Hxþ
~cI�@EXX and ACFD½Hxþ ~cII�@ACFD½H�. In this nota-
tion, the second entry in the acronyms points to the
methods used to obtain the KS orbitals and eigenvalues.
In the square brackets of the first entry, as before, the kernel
used in the ACFD theorem is specified; the correlation
kernel in the PSA introduced here is indicated by ~cI and ~cII.
The indices I and II refer to the two different sets of
parameters β2, β3, and β4 that are listed in Fig. 2 and that
were obtained by minimizing the reaction energies of the
training set of Table 1 of the SM for the approaches
ACFD½Hxþ ~cI�@EXX and ACFD½Hxþ ~cII�@ACFD½H�,
respectively. In Fig. 2, the function 1=½−1 − ατ − β2α

2τ2 −
β3α

3τ3 − β4α
4τ4� is displayed for the two sets of β param-

eters. For the β parameters ~cI and ~cII, this function, in
contrast to the function 1=½−1 − ατ� of the ACFD½Hx�
method, never becomes singular or positive, i.e., leads
to physically reasonable response matrices Xα for any
electronic system. Note that in the optimization of the β
parameters, it was not enforced to obtain nonsingular or
negative functions 1=½−1−ατ−β2α

2τ2−β3α
3τ3−β4α

4τ4�.
The minimization of the reaction energies of the training
set by itself resulted in physically reasonable functions,
which indicates that the PSA for the correlation kernel is a
reasonable ansatz.
All calculations were carried out with the development

version of the program package Molpro [52]; see the SM for
technical details.
Figure 3 shows that the new approachesACFD½Hxþ ~cI�@

EXX and ACFD½Hxþ ~cII�@ACFD½H� lead to much more
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accurate reaction energies than any other density-functional
method, including other ACFD methods. (By dRPAþ
SOSEXþ rSE@PBE an approach is designated that com-
bines the dRPA with a second order screened exchange
(SOSEX) and a correction due to renormalized singles
excitations (rSE); see Refs. [53,54].) Furthermore, the new
approaches are more accurate than the coupled-cluster
singles-doubles (CCSD) method [55] and are approaching
the accuracy of the coupled-cluster singles doubles perturba-
tive triples [CCSD(T)] method [13,56,57], which is often
considered the gold standard for reactions of the type
considered here. Indeed, the accuracy of ACFD½Hxþ
~cI�@EXX as well as ACFD½Hxþ ~cII�@ACFD½H� is better
than 1 kcal=mol (0.043 eV), which is considered as chemical
accuracy, i.e., the accuracy required to reliably describe
chemical processes.
Somewhat surprisingly, the ACFD½Hxþ ~cI�@EXX

results are more accurate than the ACFD½Hxþ ~cII�@
ACFD½H� ones, despite the fact that in the generation of
the orbitals and eigenvalues for the latter approach, the
correlation potential is not neglected but taken into account
at the dRPA level. Correlation potentials from self-
consistent dRPA (ACFD½H�) calculations have been shown
to be of good quality in most cases [37,58]. However, in a
lot of reactions of the training set of Table 1 of the SM,
the hydrogen molecule H2 is involved. For a two-
electron system like H2, the dRPA self-interaction error
is particularly important. This may compromise the quality
of the orbitals and eigenvalues used as input in the
ACFD½Hxþ ~cII�@ACFD½H� approach and might be
the reason for the somewhat lower accuracy compared to
the ACFD½Hxþ ~cI�@EXX approach. (Of course, the
ACFD½Hxþ ~cII� energy itself is completely free of self-
interactions; see above.)
In order to check whether the new methods also perform

well for reactions not contained in the training set, we
considered another set of reactions. Again, the new

methods performed with chemical accuracy; see the SM
for details. Furthermore, we optimized the β parameters of
the PSA for the correlation kernel, taking into account only
half the reactions contained in the training set, and obtained
very similar results; see the SM.
Next, we considered a standard example for static (strong)

correlation, the dissociation of the nitrogen molecule N2.
Figure 1 shows that the ACFD½Hxþ ~cII�@ACFD½H�
method yields a smooth dissociation curve without the
unphysical features of the ACFD½Hx� method. Moreover,
the resulting dissociation energy with 9.724 eV compares
very well with the corresponding value from experiment of
9.787 eV [59] and is even slightly more accurate than that
of 9.674 eV of a multireference configuration interaction
calculation taking into account single and double excitations
(MRCISD [60,61]) from a reference configuration space
containing all valence configurations. The single-reference
CCSD(T) method, on the other hand, is not able to describe
the dissociation of N2 correctly [13,62]. Around the
equilibrium bond distance, however, the CCSD(T) energies
can be assumed to be highly accurate. In this region, the
ACFD½Hxþ ~cII�@ACFD½H� and the CCSD(T) curves are
almost on top of each other. It is important to point out that
neither the N2 molecule nor bond dissociation is included in
the training set of Table 1 of the SM. This means that even
though the parameters β2, β3, and β4 were optimized with
reaction energies, the ACFD½Hxþ ~cII�@ACFD½H� method
accurately describes bond dissociation and thus static corre-
lation. This shows that the basic ansatz, i.e., the PSA for the
correlation kernel, is quite robust.
We then calculated 12 reaction barriers from a test set in

Ref. [63]. The root mean square error of 0.027 eV for both
the ACFD½Hxþ ~cI�@EXX and the ACFD½Hxþ ~cII�@
ACFD½H� methods, compared to 0.105 eV for CCSD,
underlines the accuracy of our method for systems in
nonequilibrium geometries; see the SM for details.
Finally, the ability of the new methods to describe

noncovalent interactions was checked with a test set of
24 noncovalently bounded dimers; see the SM for details.
For this test set, the new methods yield more accurate
results than CCSD and self-consistent dRPA, i.e.,
ACFD½H�@ACFD½H�, calculations. The training set of
Table 1 of the SM for determining the β parameters does
not contain the van der Waals bonded system. The fact that
nevertheless such systems can be described more accu-
rately than with the CCSD method again is an argument for
the PSA for the correlation kernel.
In summary, we have introduced with the PSA the

possibility to take into account a correlation kernel in
ACFD methods. Together with the exact treatment of the
Hartree and exchange kernel, this leads to a new family of
KS methods with unprecedented accuracy. Moreover, the
new methods represent the first single-reference methods
that can treat static (strong) correlation as accurate as high-
level multireference methods (MRCISD) in a black-box
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manner, i.e., without the need to specify a space of
reference configurations to be taken into account. This
means the newmethods are generally applicable to any type
of electronic structure. While the new methods show
accuracies of high-level quantum chemistry approaches,
they are computationally more efficient. The ACFD½Hxþ ~c�
methods exhibit a formal N5 scaling with the system size N
while CCSD and CCSD(T) exhibit an N6 or N7 scaling,
respectively, and multireference configuration interaction
methods even scale factorially. For the small molecules
considered here for the reaction energies and barriers,
ACFD½Hxþ ~cI�@EXX and ACFD½Hxþ ~cII�@ACFD½H�
calculations require about 2 and 10 times more time than
conventional KS calculations with the exchange-correlation
functional due to Perdew, Burke, and Ernzerhof [64],
respectively, while CCSD and CCSD(T) calculations
require about 20 and 80 times more. Finally, we emphasize
that the ACFD½Hxþ ~cI�@EXX and the ACFD½Hxþ
~cII�@ACFD½H� approaches are just the two first members
of this new family of KS methods using the PSA for the
correlation kernel. By taking into account more terms in the
Taylor series (9) and by possibly better determined param-
eters βn, probably even more accurate results may be
attainable without increasing the computational effort.

This work was supported by the DFG Cluster of
Excellence “Engineering of Advanced Materials” (www
.eam.uni‑erlangen.de).

*Present address: Laboratory of Physical Chemistry, ETH
Zürich, CH-8093 Zürich, Switzerland.

†andreas.goerling@fau.de
[1] D. C. Langreth and J. P. Perdew, Solid State Commun. 17,

1425 (1975).
[2] D. C. Langreth and J. P. Perdew, Phys. Rev. B 15, 2884

(1977).
[3] F. Furche, Phys. Rev. B 64, 195120 (2001).
[4] M. Fuchs and X. Gonze, Phys. Rev. B 65, 235109 (2002).
[5] A. Heßelmann and A. Görling, Mol. Phys. 108, 359 (2010).
[6] A. Heßelmann and A. Görling, Mol. Phys. 109, 2473

(2011).
[7] H. Eshuis, J. E. Bates, and F. Furche, Theor. Chem. Acc.

131, 1 (2012).
[8] P. Bleiziffer, A. Heßelmann, and A. Görling, J. Chem. Phys.

136, 134102 (2012).
[9] M. Hellgren and U. von Barth, J. Chem. Phys. 132, 044101

(2010).
[10] J. Paier, X. Ren, P. Rinke, G. E. Scuseria, A. Grüneis, G.

Kresse, and M. Scheffler, New J. Phys. 14, 043002 (2012).
[11] X. Ren, P. Rinke, C. Joas, and M. Scheffler, J. Mater. Sci.

47, 7447 (2012).
[12] P. Bleiziffer, M. Krug, and A. Görling, J. Chem. Phys. 142,

244108 (2015).
[13] R. J. Bartlett and M. Musial, Rev. Mod. Phys. 79, 291

(2007).
[14] Note that the correlation energy is defined slightly differently

in the KS formalism and in wave-function-based quantum

chemistry methods, like the hierarchy of coupled-cluster
methods. In the former case, it is the difference between the
exact electronic energy and the energy of theKS determinant;
in the latter case, it is the difference between the exact and the
Hartree-Fock energy.

[15] See Supplemental Material, which includes Refs. [16–32],
at http://link.aps.org/supplemental/10.1103/PhysRevLett
.117.143002 for more information on basis set representa-
tions of response functions, kernels, and the adiabatic-
connection fluctuation-dissipation theorem; on details of
derivations; on computational details; on details of the
training and test sets; and on the influence of the choice
of input orbitals and eigenvalues.

[16] B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, J. Chem.
Phys. 71, 3396 (1979).

[17] J. W. Mintmire and B. I. Dunlap, Phys. Rev. A 25, 88
(1982).

[18] J. W. Mintmire, J. R. Sabin, and S. B. Trickey, Phys. Rev. B
26, 1743 (1982).

[19] J. Carmona-Espindola, R. Flores-Moreno, and A. Köster,
J. Chem. Phys. 133, 084102 (2010).

[20] D. E. Woon and J. T. H. Dunning, J. Chem. Phys. 103, 4572
(1995).

[21] F. Weigend, A. Köhn, and C. Hättig, J. Chem. Phys. 116,
3175 (2002).

[22] Q.Wu andW. Yang, J. Theor. Comput. Chem. 2, 627 (2003).
[23] R. D. Amos, N. C. Handy, P. J. Knowles, J. E. Rice, and

A. J. Stone, J. Phys. Chem. 89, 2186 (1985).
[24] A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch,

J. Olsen, and A. K. Wilson, Chem. Phys. Lett. 286, 243
(1998).

[25] S. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).
[26] T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys.

127, 221106 (2007).
[27] G. Knizia and H.-J. Werner, J. Chem. Phys. 128, 154103

(2008).
[28] G. Knizia, T. B. Adler, and H.-J. Werner, J. Chem. Phys.

130, 054104 (2009).
[29] F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 (2002).
[30] A. Karton, S. Daon, and J. M. Martin, Chem. Phys. Lett.

510, 165 (2011).
[31] J. Zheng, Y. Zhao, and D. G. Truhlar, J. Chem. Theory

Comput. 5, 808 (2009).
[32] Y. Zhao, N. González-García, and D. G. Truhlar, J. Phys.

Chem. A 109, 2012 (2005).
[33] Time-Dependent Density Functional Theory, Lecture Notes

in Physics Vol. 706, edited by M. A. L. Marques (Springer,
Heidelberg, 2006).

[34] P. Elliot, F. Furche, and K. Burke, Excited States from
Time-Dependent Density Functional Theory (Wiley,
New York, 2009), p. 91.

[35] C. A. Ullrich, Time-Dependent Density-Functional Theory
(Oxford University Press, Oxford, England, 2012).

[36] M. Thiele and S. Kümmel, Phys. Rev. Lett. 112, 083001
(2014).

[37] P. Bleiziffer, A. Heßelmann, and A. Görling, J. Chem. Phys.
139, 084113 (2013); note that in Eqs. (30), (31), and
(48)–(51) of this reference, there is a sign error in the
denominators of the right-hand side. They should read
1 − σðiωÞ instead of 1þ σðiωÞ.

PRL 117, 143002 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
30 SEPTEMBER 2016

143002-5

www.eam.uni-erlangen.de
www.eam.uni-erlangen.de
www.eam.uni-erlangen.de
www.eam.uni-erlangen.de
http://dx.doi.org/10.1016/0038-1098(75)90618-3
http://dx.doi.org/10.1016/0038-1098(75)90618-3
http://dx.doi.org/10.1103/PhysRevB.15.2884
http://dx.doi.org/10.1103/PhysRevB.15.2884
http://dx.doi.org/10.1103/PhysRevB.64.195120
http://dx.doi.org/10.1103/PhysRevB.65.235109
http://dx.doi.org/10.1080/00268970903476662
http://dx.doi.org/10.1080/00268976.2011.614282
http://dx.doi.org/10.1080/00268976.2011.614282
http://dx.doi.org/10.1063/1.3697845
http://dx.doi.org/10.1063/1.3697845
http://dx.doi.org/10.1063/1.3290947
http://dx.doi.org/10.1063/1.3290947
http://dx.doi.org/10.1088/1367-2630/14/4/043002
http://dx.doi.org/10.1007/s10853-012-6570-4
http://dx.doi.org/10.1007/s10853-012-6570-4
http://dx.doi.org/10.1063/1.4922517
http://dx.doi.org/10.1063/1.4922517
http://dx.doi.org/10.1103/RevModPhys.79.291
http://dx.doi.org/10.1103/RevModPhys.79.291
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.143002
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.143002
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.143002
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.143002
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.143002
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.143002
http://dx.doi.org/10.1063/1.438728
http://dx.doi.org/10.1063/1.438728
http://dx.doi.org/10.1103/PhysRevA.25.88
http://dx.doi.org/10.1103/PhysRevA.25.88
http://dx.doi.org/10.1103/PhysRevB.26.1743
http://dx.doi.org/10.1103/PhysRevB.26.1743
http://dx.doi.org/10.1063/1.3478551
http://dx.doi.org/10.1063/1.470645
http://dx.doi.org/10.1063/1.470645
http://dx.doi.org/10.1063/1.1445115
http://dx.doi.org/10.1063/1.1445115
http://dx.doi.org/10.1142/S0219633603000690
http://dx.doi.org/10.1021/j100257a010
http://dx.doi.org/10.1016/S0009-2614(98)00111-0
http://dx.doi.org/10.1016/S0009-2614(98)00111-0
http://dx.doi.org/10.1080/00268977000101561
http://dx.doi.org/10.1063/1.2817618
http://dx.doi.org/10.1063/1.2817618
http://dx.doi.org/10.1063/1.2889388
http://dx.doi.org/10.1063/1.2889388
http://dx.doi.org/10.1063/1.3054300
http://dx.doi.org/10.1063/1.3054300
http://dx.doi.org/10.1039/b204199p
http://dx.doi.org/10.1016/j.cplett.2011.05.007
http://dx.doi.org/10.1016/j.cplett.2011.05.007
http://dx.doi.org/10.1021/ct800568m
http://dx.doi.org/10.1021/ct800568m
http://dx.doi.org/10.1021/jp045141s
http://dx.doi.org/10.1021/jp045141s
http://dx.doi.org/10.1103/PhysRevLett.112.083001
http://dx.doi.org/10.1103/PhysRevLett.112.083001
http://dx.doi.org/10.1063/1.4818984
http://dx.doi.org/10.1063/1.4818984


[38] A. Heßelmann and A. Görling, Phys. Rev. Lett. 106, 093001
(2011).

[39] A. Görling, Int. J. Quantum Chem. 69, 265 (1998).
[40] A. Görling, Phys. Rev. A 57, 3433 (1998).
[41] Y.-H. Kim and A. Görling, Phys. Rev. B 66, 035114 (2002).
[42] P. Bleiziffer, D. Schmidtel, and A. Görling, J. Chem. Phys.

141, 204107 (2014).
[43] A. Görling and M. Levy, Phys. Rev. A 50, 196 (1994).
[44] A. Görling and M. Levy, Int. J. Quantum Chem. Symp. 29,

93 (1995).
[45] R. T. Sharp and G. K. Horton, Phys. Rev. 90, 317 (1953).
[46] J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36

(1976).
[47] A. Görling, Phys. Rev. Lett. 83, 5459 (1999).
[48] S. Ivanov, S. Hirata, and R. J. Bartlett, Phys. Rev. Lett. 83,

5455 (1999).
[49] A. Görling, J. Chem. Phys. 123, 062203 (2005).
[50] P. Verma and R. J. Bartlett, J. Chem. Phys. 136, 044105

(2012).
[51] M. Hellgren, D. Rohr, and E. K. U. Gross, J. Chem. Phys.

136, 034106 (2012).
[52] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M.

Schütz et al., MOLPRO, version 2012.2, 2012, http://www
.molpro.net.

[53] A. Grüneis, M. Marsman, J. Harl, L. Schimka, and G.
Kresse, J. Chem. Phys. 131, 154115 (2009).

[54] X. Ren, A. Tkatchenko, P. Rinke, and M. Scheffler, Phys.
Rev. Lett. 106, 153003 (2011).

[55] G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910
(1982).

[56] K. Raghavachari, G. W. Trucks, J. A. Pople, and M.
Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).

[57] J. D. Watts, J. Gauss, and R. J. Bartlett, J. Chem. Phys. 98,
8718 (1993).

[58] P. Bleiziffer, A. Heßelmann, C. J. Umrigar, and A. Görling,
Phys. Rev. A 88, 042513 (2013).

[59] L. Bytautas and K. Ruedenberg, J. Chem. Phys. 122,
154110 (2005).

[60] P. J. Knowles and H.-J. Werner, Chem. Phys. Lett. 145, 514
(1988).

[61] H.-J. Werner and P. Knowles, J. Chem. Phys. 89, 5803
(1988).

[62] W. D. Laidig, P. Saxe, and R. J. Bartlett, J. Chem. Phys. 86,
887 (1987).

[63] P. Verma, A. Perera, and R. J. Bartlett, Chem. Phys. Lett.
524, 10 (2012).

[64] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett.
77, 3865 (1996).

PRL 117, 143002 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
30 SEPTEMBER 2016

143002-6

http://dx.doi.org/10.1103/PhysRevLett.106.093001
http://dx.doi.org/10.1103/PhysRevLett.106.093001
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)69:3%3C265::AID-QUA6%3E3.0.CO;2-T
http://dx.doi.org/10.1103/PhysRevA.57.3433
http://dx.doi.org/10.1103/PhysRevB.66.035114
http://dx.doi.org/10.1063/1.4901924
http://dx.doi.org/10.1063/1.4901924
http://dx.doi.org/10.1103/PhysRevA.50.196
http://dx.doi.org/10.1103/PhysRev.90.317
http://dx.doi.org/10.1103/PhysRevA.14.36
http://dx.doi.org/10.1103/PhysRevA.14.36
http://dx.doi.org/10.1103/PhysRevLett.83.5459
http://dx.doi.org/10.1103/PhysRevLett.83.5455
http://dx.doi.org/10.1103/PhysRevLett.83.5455
http://dx.doi.org/10.1063/1.1904583
http://dx.doi.org/10.1063/1.3678180
http://dx.doi.org/10.1063/1.3678180
http://dx.doi.org/10.1063/1.3676174
http://dx.doi.org/10.1063/1.3676174
http://www.molpro.net
http://www.molpro.net
http://www.molpro.net
http://dx.doi.org/10.1063/1.3250347
http://dx.doi.org/10.1103/PhysRevLett.106.153003
http://dx.doi.org/10.1103/PhysRevLett.106.153003
http://dx.doi.org/10.1063/1.443164
http://dx.doi.org/10.1063/1.443164
http://dx.doi.org/10.1016/S0009-2614(89)87395-6
http://dx.doi.org/10.1063/1.464480
http://dx.doi.org/10.1063/1.464480
http://dx.doi.org/10.1103/PhysRevA.88.042513
http://dx.doi.org/10.1063/1.1869493
http://dx.doi.org/10.1063/1.1869493
http://dx.doi.org/10.1016/0009-2614(88)87412-8
http://dx.doi.org/10.1016/0009-2614(88)87412-8
http://dx.doi.org/10.1063/1.455556
http://dx.doi.org/10.1063/1.455556
http://dx.doi.org/10.1063/1.452291
http://dx.doi.org/10.1063/1.452291
http://dx.doi.org/10.1016/j.cplett.2011.12.017
http://dx.doi.org/10.1016/j.cplett.2011.12.017
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865

