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We report the first lattice QCD calculation of the glue spin in the nucleon. The lattice calculation is
carried out with valence overlap fermions on 2þ 1 flavor domain-wall fermion gauge configurations on
four lattice spacings and four volumes including an ensemble with physical values for the quark masses.
The glue spin SG in the Coulomb gauge in the modified minimal subtraction (MS) scheme is obtained with
one-loop perturbative matching. We find the results fairly insensitive to lattice spacing and quark masses.
We also find that the proton momentum dependence of SG in the range 0 ≤ j~pj < 1.5 GeV is very mild, and
we determine it in the large-momentum limit to be SG ¼ 0.251ð47Þð16Þ at the physical pion mass in the MS
scheme at μ2 ¼ 10 GeV2. If the matching procedure in large-momentum effective theory is neglected, SG is
equal to the glue helicity measured in high-energy scattering experiments.
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Introduction.—Deep-inelastic scattering experiments
reveal that, contrary to the naive quark model, the quark
spin contribution to the proton spin is quite small, about
30% [1–3]. In an effort to search for the missing proton
spin, recent analyses [4,5] of the high-statistics 2009 STAR
[6] and PHENIX [7] experiments at RHIC showed evi-
dence of nonzero glue helicity ΔG in the proton. For
Q2 ¼ 10 GeV2, the glue helicity distribution Δgðx;Q2Þ is
found to be positive and away from zero in the momentum
fraction region x < 0.05. However, the results are limited
by very large uncertainty in this region.
The recent COMPASS analysis explored ΔgðxÞ from the

scaling violation of ΔqðxÞ, and the highly distinct solutions
of ΔgðxÞ can be obtained with different parametrizations of
ΔqðxÞ [8]. Therefore, it hints that if a high precision ΔgðxÞ
can be obtained directly, it will benefit our understanding of
the parametrizations of ΔqðxÞ and provide more informa-
tion about the role of quark spin in the proton.
Given the importance of ΔgðxÞ to explain the origin of

the proton spin, and the fact that significant efforts are
devoted to its precise experimental determination, a theo-
retical understanding and calculation of ΔG is highly
desired. ΔG is defined as the first moment of the glue
helicity distribution ΔgðxÞ [9],

ΔG ¼
Z

dx
i

2xPþ

Z
dξ−

2π
e−ixP

þξ−

× hPSjFþα
a ðξ−ÞLabðξ−; 0Þ ~Fþ

α;bð0ÞjPSi; ð1Þ

where the light front coordinates are ξ� ¼ ðξ0 � ξ3Þ= ffiffiffi
2

p
.

The proton plane wave state is written as jPSi, with
momentum Pμ ¼ ðP; 0; 0; PÞ and polarization S. The light-
cone gauge-link Lðξ−; 0Þ ¼ P exp½−ig R ξ−

0 Aþðη−; 0⊥Þdη−�
is defined in the adjoint representation. It connects the
gauge field tensor and its dual, ~Fαβ ¼ 1

2
ϵαβμνFμν, to con-

struct a gauge-invariant operator. After integrating over x,
one can define the gauge-invariant gluon helicity operator
in a nonlocal form [10,11],

~Sg ¼
�
~Eað0Þ×

�
~Aað0Þ− 1

∇þ ð ~∇Aþ;bÞLbaðξ−;0Þ
��

z
; ð2Þ

where ∇þ ¼ ∂=∂ξ−. It is the gauge-invariant extension of

the operator ~E × ~A in the light-cone gauge Aþ ¼ 0, but one
cannot evaluate this expression on the lattice directly due to
its real-time dependence.
On the other hand, ~Sg is equal to the infinite momentum

frame (IMF) limit of a universality class of operators [12]
whose matrix elements can be matched to ΔG through a
factorization formula in large-momentum effective theory
(LMET) [13,14]. The gluon spin operator proposed in
Ref. [15,16] with the non-Abelian transverse condition
belongs to this universality class and has been proven to be

equivalent to the gauge-invariant extension of ~E × ~A in the

Coulomb gauge ~∂ · ~A ¼ 0 [17,18],
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~Sg ¼ 2

Z
d3xTrð~Ec × ~AcÞ; ð3Þ

where the factor 2 is from the normalization of the SU(3)

group generators and ~Ec and ~Ac are the chromoelectric field
and gauge potential in the Coulomb gauge with their lattice
versions to be addressed in the following.

~Sg is not Lorentz covariant and has nontrivial frame
dependence [11]. It is shown in Ref. [12] that when boosted
to the IMF, the Coulomb gauge fixing condition (as well as
the temporal condition A0 ¼ 0) [12] becomes Aþ ¼ 0, and

then the longitudinal component of ~Sg in either gauge is

equivalent to the glue helicity operator ~Sg with a proper

matching to cancel the intrinsic frame dependence of ~Sg.
On the lattice, the Coulomb condition can be obtained

numerically [19] and the glue spin operator ~Sg in the
Coulomb gauge can be calculated without numerical
difficulty.
The major task of this work is calculating the matrix

element of ~Sg in the proton, which will be indicated as SG,
in the rest and moving frames. The results are then
renormalized at one-loop order in lattice perturbation
theory and matched to the modified minimal subtraction
(MS) scheme at μ2 ¼ 10 GeV2, to investigate their frame
dependence and address the matching to the helicity.
Numerical details.—A preliminary attempt [20] to cal-

culate SG was carried out on 2þ 1 flavor dynamical
domain-wall configurations on a 243 × 64 lattice (24I)
with the sea pion mass at 330 MeV and on a 323 × 64
lattice with sea pion mass at 300 MeV [21]. In this work,
we improve the statistics on the ensembles mentioned
above and carry out the calculation on another three
ensembles with different lattice spacings, volumes, and
sea quark masses to check the corrections to the glue spin
from various systematic uncertainties. We use the 2-2-2
smeared stochastic grid source on all the ensembles (except
48I, where the 4-4-4 smeared stochastic grid source
is used), and apply the low-mode substitution [22,23] to
make the signal-to-noise ratio close to that with 8 (64 on
the 48I ensemble) independent smeared point sources.
Furthermore, we loop over all the time slices for the
two-point functions of the nucleon to increase statistics.
The statistics used for this grid source measurement is
roughly equivalent to evaluating a large number of quasi-
independent smeared point source measurements ranging
from 103,936 on the 24I lattice to 497,664 on the 48I
lattice. The parameters of the ensembles used in this work
are listed in Table I, and more details of the simulation
setups can be found in the Supplemental Material [24].
The Coulomb gauge fixing condition used here is

enforced by requiring that the spatial sum of the backward
difference of the hypercubic (HYP)-smeared gauge links
[26] be zero,

X
μ¼x;y;z

½Uc
μðxÞ − Uc

μðx − aμ̂Þ� ¼ 0; ð4Þ

where Uc
μðxÞ is the Coulomb gauge fixed Wilson link from

xþ aμ̂ to x. The gauge fixed potential Ac is defined by

Ac;μ¼
�
Uc

μðxÞ−Uc†
μ ðxÞþUc

μðx−aμ̂Þ−Uc†
μ ðx−aμ̂Þ

4iag

�
traceless

;

ð5Þ

with g as the bare coupling constant, and the chromoelectric
field used in this work is given by the clover definition,

Fc
μν ¼

i
8a2g

ðPμ;ν − Pν;μ þ Pν;−μ − P−μ;ν

þ P−μ;−ν − P−ν;−μ þ P−ν;μ − Pμ;−νÞ; ð6Þ

where Pμ;ν ¼ Uc
μðxÞUc

νðxþ aμ̂ÞUc†
μ ðxþ aν̂ÞUc†

ν ðxÞ.
In order to extract SG, we compute the ratio of the

disconnected three-point function with the gluon operator
insertion to the nucleon propagator with the source and sink
of the nucleon located at 0 and tf, respectively. The glue
spin operator is inserted at the time slice t, which is between
0 and tf. Then the ratio in a moving frame ~p ¼ ð0; 0; p3Þ
along the z direction is

Rðtf; tÞ ¼
h0jΓm

3

R
d3ye−ip3y3χð~y; tfÞS3gðtÞχ̄ð~0; 0Þj0i

h0jΓe
R
d3ye−ip3y3χð~y; tfÞχ̄ð~0; 0Þj0i

; ð7Þ

where χ is the nucleon interpolation field and Γe and Γm
3 are

the unpolarized projection operator of the proton and the
polarized one along the z direction, respectively. When tf is
large enough, Rðtf; tÞ is equal to the proton matrix element
of the longitudinal glue spin operator SG plus t-dependent
corrections,

Rðtf; tÞ ¼ SG þ C1e−ΔEðtf−tÞ þ C2e−ΔEt þ C3e−ΔEtf ; ð8Þ
where ΔE is the energy difference between the first excited
state and the ground state and C1;2;3 are the spectral weights
involving the excited state.

TABLE I. The parameters for the RBC and UKQCD configu-

rations [25]. mðsÞ
π is the pion mass of the light sea quark in the

2þ 1 flavor configuration, and Ncfg is the number of configu-
rations used in the simulation.

Symbol L3 × T a (fm) mðsÞ
π (MeV) Ncfg

32ID 323 × 64 0.1431(7) 170 200
48I 483 × 96 0.1141(2) 140 81
24I 243 × 64 0.1105(3) 330 203
32I 323 × 64 0.0828(3) 300 309
32If 323 × 64 0.0627(3) 370 238
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We plot the ratio Rðtf; tÞ for the unitary point on the 24I
ensemble, as a function of t − tf=2 for several tf, in Fig. 1.
The curves predicted by the fit agree with the data, and the
χ2=d.o.f. is smaller than 1.4 for all the other quark masses
on five ensembles. From the fit, we see that the excited-
state contamination is small when the source-sink separa-
tion is larger than 1 fm. The final prediction of SG (the gray
band) is consistent with the blue and purple data points at
t ∼ tf=2. Similar plots for the other ensembles can be found
in the Supplemental Material [24].
It is observed that the central values of the glue spin

matrix elements as a function of HYP-smearing steps are
unchanged after two or three steps of smearing, as shown in
Fig. 2 (for the case of the unitary point on the ensemble

24I), while the SNR can be improved when more
HYP-smearing steps are applied. In this work, five steps
of HYP smearing are used for the glue spin operator on
each ensemble, and the nucleon two-point correlators with
the source located on all the time slices are generated to
increase the SNR. Since the tadpole improvement factor is
1=u50 ∼ 2 for the Sg operator without any HYP smearing,
the enlargement of the result after the HYP smearing is
understandable. Note that the HYP smearing here just
affects the glue spin operator, but the gauge action is
unchanged since no reweighting is applied on configuration
averages.
Results.—The renormalized matrix element SG including

mixing from the quark spin is [27]

SM̄S
G ¼

�
1 −

g2

16π2

�
Nf

�
2

3
logðμ2a2Þ þ 1.27

�

−CA

�
4

3
logðμ2a2Þ þ fggðg2Þ

���
SLG

þ g2CF

16π2

�
5

3
logðμ2a2Þ þ 7.31

�
ΔΣL þOðg4Þ; ð9Þ

where the superscripts MS and L indicate the quantities
under the MS scheme and that under lattice regularization,
respectively. We applied the cactus improvement [28] to
resum the major tadpole contributions to get a better
convergence in the one-loop correction of the glue spin.
Then the resummed finite piece fggðg2Þ depends on the
bare coupling g2 weakly and is in the range of 1.7–2.4 for
the values of g2 we used in this work. The details are
addressed in Ref. [27]. Since the value of the mixing term
involving ΔΣL in Eq. (9) is at the same order of the present
statistical error of SLG, the uncertainty due to ΔΣL for the
gauge ensembles considered here will be even smaller.
Therefore, we approximate the quark spin ΔΣL by the
experimental value ΔΣM̄S, which is ∼30% of the total
proton spin from the global analysis of deep-inelastic
scattering data [1–3].
After matching to the values under the MS scheme at

μ2 ¼ 10 GeV2, we find that the valence quark mass
dependence is mild regardless of the proton momentum.
In Fig. 3, we show results in the rest frame for various
valence quark masses on all the five ensembles, with five
pairs of volumes and lattice spacings. Their dependence is
also mild. To obtain SG in a relatively large-momentum
frame, we calculate SG for all the momenta smaller than
π=ð4aÞ on all the five ensembles. To show the frame
dependence, we extrapolate SG on all the ensembles in
different momentum frames to the physical value of the
valence pion mass, as shown in Fig. 4. Some points are not
shown in the figure if their uncertainties are larger than the
signal.

FIG. 1. The ratio Rðtf; tÞ as a function of the source-sink
separation tf and the current time slice t, for the bare glue spin
matrix element in the proton SbareG is plotted at the unitary point on
the 24I ensemble. The gray band shows the result extrapolated to
infinite separation, which corresponds to the prediction of SG.
The excited-state contamination is small when the source-sink
separation is larger than 1 fm. The inset shows that the prediction
of

P
tRðtf; tÞ from the two-state fit (the band) in Eq. (8) agrees

well with the data points.
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The glue helicity in the proton ΔG corresponds to the
glue longitudinal spin component SG in the IMF. The
LMET [14] shows a large finite correction at the one-loop
level:

SGðj~pj; μÞ ¼
�
1þ g2CA

16π2

�
7

3
log

ð~pÞ2
μ2

− 10.2098

��
ΔGðμÞ

þ g2CF

16π2

�
4

3
log

ð~pÞ2
μ2

− 5.2627

�
ΔΣðμÞ

þOðg4Þ þO

�
1

ð~pÞ2
�
: ð10Þ

At μ2 ¼ 10 GeV2 and j~pj ¼ 1.5 GeV, the factor before
ΔG is 0.22, which is much smaller than unity and indicates
a convergence problem for the perturbative series even after
one resums the large logarithms. (The factor is 0.80 if the
finite piece 10.2098 is removed.) On the other hand, the
largest momentum we have on the lattice with acceptable
signal is comparable to the proton mass, so the power
corrections in Eq. (10) cannot be neglected and one cannot
simply apply this matching condition. Nevertheless, the
mild dependence of SG on the proton momentum as in
Fig. 4 leads us to suggest that it could be a small effect to
match to the IMF; i.e., SG ≈ ΔGþO(1=ð~pÞ2).
Therefore, we neglect the one-loop LMET matching and

use the following empirical form to fit our data:

SGðj~pjÞ ¼ SGð∞Þ þ C1

M2 þ ð~pÞ2 þ C2ðm2
π;vv −m2

π;physÞ

þ C3ðm2
π;ss −m2

π;physÞ þ C4a2; ð11Þ

where mπ;phys ¼ 0.139 GeV and M ¼ 0.939 GeV are the
physical pion and proton mass, respectively, and mπ;vv=ss

are the valence and sea pion masses, respectively. The

1=ð~pÞ2 correction in Eq. (10) is replaced by 1=½M2 þ ð~pÞ2�
to include all the data in the fitting. Since all the coefficients
other than SGð∞Þ are small, the cross terms and the higher-
order terms are ignored. The overall χ2=d.o.f. is 1.21 with
110 degrees of freedom. In Fig. 4, the band of the global fit
with the empirical form in Eq. (11) shows that the frame
dependence is mild and the central value is changed by less
than 10% from its value in the rest frame to that at
j~pj ∼ 1.5 GeV; the change is smaller than the statistical
uncertainty.
Since the Coulomb gauge fixing on the lattice has a built-

in OðaÞ correction, we repeated the fit with a linear term in
a. The central value is changed by about 1%, while the
uncertainty is larger. We take the variance of the central
values from two fits as an estimate of this uncertainty.
Similarly, the uncertainty from the volume dependence
e−mπvvL is estimated in the same way and added to the
systematic uncertainties in quadrature. In addition, the
value of the quark spin ΔΣ is varied by 20% to cover
the value∼0.30 [1] and that from Ref. [3]. The final result is
SGð∞; μ2 ¼ 10 GeV2Þ ¼ 0.251ð47Þð16Þ with two errors
from the statistical and systematic uncertainties.
Summary and outlook.—In this work, we calculated the

glue spin in the proton for the first time based on ~E × ~A in
the Coulomb gauge [15,16], with various quark masses,
lattice spacings, volumes, and proton momenta. The results
showmild dependencies on these quantities. After one-loop
perturbative matching from the lattice theory to the con-
tinuum and neglecting the matching effect between the glue
spin and helicity, we conclude that the gluon helicity
ΔGðμ2¼10GeV2Þ≈SGð∞;μ2¼10GeV2Þ¼0.251ð47Þð16Þ,
which is 50(9)(3)% of the total proton spin. The cactus
improvement [28] we used in Eq. (9) indicates that
uncertainties can be considerable in perturbative QCD,
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and its reliability should be checked with nonperturbative
renormalization in the future.
On the LMET side, the convergence problem warrants

the matching condition to be calculated at the two-loop
level or higher. On the other hand, if the glue spin in the
temporal gauge can be calculated on the lattice, then its
LMET matching in Eq. (10) can be avoided at the one-
loop level [12]. This possibility is worthy of further
investigation [27].
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