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There are important differences between the nonrelativistic and relativistic description of electron beams.
In the relativistic case the orbital angular momentum quantum number cannot be used to specify the wave
functions and the structure of vortex lines in these two descriptions is completely different. We introduce
analytic solutions of the Dirac equation in the form of exponential wave packets and we argue that they
properly describe relativistic electron beams carrying angular momentum.
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Introduction.—Recent advances in experiments with
relativistic (100–300 keV) electron beams [1–9] carrying
orbital angular momentum call for a mathematical descrip-
tion based on the Dirac equation. The generally used
Schrödinger equation gives an inadequate description
because the differences between the nonrelativistic and
relativistic wave functions are essential. It is not only the
problem of relativistic corrections, which for 300 keV
electrons may amount to about 60%. A more important
difference is in the use of the orbital angular momentum
quantum number l in the description of electronic states. In
the nonrelativistic case both the orbital angular momentum
and the total angular momentum are separately conserved
while in the relativistic case only the total angular momen-
tum has this property. This has already been pointed out by
Dirac who in his first paper on the theory of the electron
wrote “This makes a difference between the present theory
and the previous spinning electron theory, in which m2 is
constant.” Directly related to the problem of orbital angular
momentum is a different structure of vortex lines in the
two cases.
The nonrelativistic wave function in free space is simply

a product of the coordinate part and the spin part; the orbital
angular momentum and the spin are separately conserved.
In the relativistic theory, even in free space, the spin is
coupled to the orbital angular momentum and only the total
angular momentum is conserved. As a consequence, there
are no acceptable solutions of the Dirac equation that are
eigenstates of the orbital angular momentum.
The proof of this assertion starts with the Dirac

equation iℏ∂tΨ ¼ HΨ and we assume that LzΨ ¼ ℏlΨ.
By multiplying both sides of the Dirac equation first by ℏl,
then by Lz, and subtracting the two equations one obtains
½Lz;H�Ψ ¼ 0. Obviously, also ½Lz;H�2Ψ ¼ 0. Hence,
ðp2

x þ p2
yÞΨ ¼ 0. This means that Ψ is a solution of the

Laplace equation in 2D. However, in free space the
solutions of this equation are unacceptable because they

are all unbounded. In particular, the solutions with given l
behave as ρl or ρ−l.
There is also another important difference between the

nonrelativistic and relativistic description. In the nonrela-
tivistic case the speed of light does not appear. As a result,
there is no intrinsic length scale. The relativistic length—
Compton wavelength of the electron—plays a crucial role
in our exponential solutions because it determines the
asymptotic behavior of the wave packet far from the center.
The analysis of experiments in Refs. [1–9] is based on

the solutions of the Schrödinger equation in the form of
Laguerre-Gauss (LG) wave packets. The same nonrelativ-
istic wave packets were the subject of theoretical analysis in
Refs. [10–13]. In principle, these solutions can be extended
to the relativistic domain. However, they are not a good
representation of the experimentally produced beams of
relativistic electrons because, as we show below, they
contain counterpropagating components. There is a solu-
tion of the Dirac equation in the form of Bessel functions
[14] that does not have such components. However, Bessel
functions are unphysical since they carry infinite energy. In
this Letter we introduce solutions of the Dirac equation—
exponential wave packets—that do not have these short-
comings. Like the Bessel and LG wave packets, the
exponential wave packets are eigenfunctions of the total
angular momentum in the direction of propagation. We
believe that exponential wave packets are suitable repre-
sentations of the experimentally studied beams of relativ-
istic electrons endowed with angular momentum. In what
follows we present a straightforward general procedure for
constructing solutions of the Dirac equation and we apply
this procedure to the three cases of interest.
Construction of the solutions of the Dirac equation from

scalar functions.—Construction of the solutions of the
Dirac equation is greatly simplified if one starts with
solutions of the scalar Klein-Gordon (KG) equation. In
order to generate a general solution of the Dirac equation
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one would need two such scalar functions. We shall be
interested in the wave packets forming a beam of electrons
with a given projection of the total angular momentum on
the direction of propagation. In this case it is sufficient to
use only one scalar function. Our construction (we will call
it KG → D) proceeds as follows. Let f be a solution of the
KG equation,

½1=c2∂2
t −△þ ðmc=ℏÞ2�f ¼ 0: ð1Þ

Next, we form a two component spinor ϕ ¼ ðf; 0Þ and act
on this spinor with the matrix iƛD,

D ¼
�
1=c∂t þ ∂z ∂x − i∂y

∂x þ i∂y 1=c∂t − ∂z

�
; ð2Þ

to define a second spinor χ,

χ ¼ iƛDϕ; ð3Þ

where ƛ ¼ ℏ=mc is the electron Compton wavelength. In
turn, acting on χ with the conjugate matrix ~D,

~D ¼
�
1=c∂t − ∂z −∂x þ i∂y

−∂x − i∂y 1=c∂t þ ∂z

�
; ð4Þ

with the use of the KG equation for ϕ, one obtains

~Dχ ¼ −ði=ƛÞϕ: ð5Þ

Equations (3) and (5) can be written in a fully symmetric
form

iℏDϕ ¼ mcχ; ð6Þ

iℏ ~Dχ ¼ mcϕ: ð7Þ

This pair of equations is the Dirac equation for the bispinor
Ψ ¼ ðϕ; χÞ,

ðiℏγμ∂μ −mcÞΨ ¼ 0; ð8Þ

written in the spinorial basis of γ matrices,

γ0 ¼
�
0 1

1 0

�
; γi ¼

�
0 −σi
σi 0

�
: ð9Þ

Starting from different solutions of the KG equations, we
shall now derive, by the KG → D procedure, several
solutions of the Dirac equation.
Bessel wave packets of Dirac electrons.—The Bessel

solution of the Dirac equation is obtained by applying the
KG → D procedure to the scalar function flB:

flBðρ;φ; z; tÞ ¼ e−iðEt−pzzÞ=ℏeilφJlðp⊥ρ=ℏÞ; ð10Þ

where p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE=cÞ2 − ðmcÞ2 − p2

z

p
is the transverse com-

ponent of the momentum. In terms of spinors ϕ and χ this
solution reads

ϕ ¼
�
flB
0

�
; χ ¼ 1

mc

� ðE=c − pzÞflB
−ip⊥flþ1

B

�
: ð11Þ

The Bessel solution of the Dirac equation ΨB is labeled
by three quantum numbers: the energy E, the momentum in
the direction of propagation pz, and the projection ℏl of
the orbital angular momentum on the direction of propa-
gation. The bispinor ΨB is not an eigenfunction of Lz
because it contains parts with l and lþ 1. However, it is an
eigenfunction of the total angular momentum in the z
direction, Jz ¼ xpy − ypx þ Sz, belonging to the eigen-
value ℏðlþ 1=2Þ. Should we have chosen ϕ ¼ ð0; flBÞ and
modified χ accordingly,

ϕ ¼
�
0

flB

�
; χ ¼ 1

mc

�
ip⊥fl−1B

ðE=c − pzÞflB

�
; ð12Þ

we would obtain the solution with the eigenvalue of Jz
equal to ℏðl − 1=2Þ. The solutions (11) and (12) illustrate
the statement in the introduction that Dirac bispinors cannot
be eigenfunctions of Lz. Indeed, Eq. (11) contains parts
with l and with lþ 1 while Eq. (12) contains parts with l
and with l − 1. Even though pure Bessel solutions are not
realistic because they carry infinite energy, we shall use
them as very convenient building blocks, as we have done
before for optical beams [15,16].
Laguerre-Gauss wave packets of Dirac electrons.—The

LG solution of the Schrödinger equation, frequently men-
tioned in the context of electron beams [2–4,8,10–13]
(although never written down explicitly), has the form

ψLGðρ;φ; z; tÞ ¼ exp ð−ip2
zt=2mℏÞ exp ðipzz=ℏÞ

×
ρjljeilφ

aðtÞnþjljþ1
exp

�
−

ρ2

aðtÞ
�
Ljlj
n

�
ρ2

aðtÞ
�
;

ð13Þ

where aðtÞ ¼ w2 þ 2iℏt=m. The parameter w controls the
width of the wave packet. This solution of the nonrelativ-
istic Schrödinger equation can be extended to the relativ-
istic domain by choosing the scalar solution of the KG
equation fLG in the form
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fLGðρ;φ; z; tÞ ¼ exp ð−iEt−=2ℏÞ exp
�
−i

m2c4

2Eℏ
tþ

�

×
ρjljeilφ

aðtþÞnþjljþ1
exp

�
−

ρ2

aðtþÞ
�
Ljlj
n

�
ρ2

aðtþÞ
�
;

ð14Þ

where aðtþÞ ¼ w2 þ 2iℏc2tþ=E and t� ¼ t� z=c. In the
nonrelativistic limit (c → ∞), after setting E ¼ mc2 þ cpz

and filtering out the rest mass oscillations exp ðimc2t=ℏÞ,
one obtains back ψLG.
The LG solution of the Dirac equation ΨLG is obtained

by applying the KG → D procedure to fLG. This solution
does not describe correctly relativistic electron beams
because in addition to the dependence on t − z=c it depends
also on tþ z=c. The dependence on tþ invalidates the use
of the LG solutions for relativistic electrons because it
simply means that in such a beam there are also electrons
propagating in the opposite direction. We propose to
replace the LG solutions of the Dirac equation by the
exponential solutions described below.
The exponential wave packets of Dirac electrons.—The

exponential solutions of the Dirac equation are obtained by
applying the KG → D procedure to the following scalar
solution of the KG equation:

fExpðρ;φ; z; tÞ ¼ eipzz=ℏeilφ

×
e−bhðρ;tÞ

hðρ; tÞ
�

qρ
hðρ; tÞ þ 1þ iqct

�jlj
; ð15Þ

where

hðρ; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ iqctÞ2 þ ðqρÞ2

q
; ð16Þ

b is a dimensionless parameter that controls the width of the
wave packet, q ¼ γ=bƛ, and γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðpz=mcÞ2

p
¼

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z=c2

p
is the relativistic factor. For realistic beams

the parameter b must be very large to compensate for
the smallness of the electron Compton wavelength
(ƛ ¼ 3.86 × 10−13 m). The exponential solutions are
labeled by two quantum numbers pz and l and by the
parameter b. In Fig. 1 we show that, indeed, the parameter b
determines the width of the wave packet. The beams
described by the exponential solutions for large values
of ρ=ƛ fall off as expð−γρ=ƛÞ=ρ. In contrast to relativistic
LG solutions, this rate of decrease is not constant but it
grows with increasing electron energy.
Applying the KG → D procedure one obtains the exact

solutionΨExp of the Dirac equation with the spinors ϕ and χ
built from fExp,

ϕ ¼
�
fExp
0

�
; χ ¼ iƛ

� ð1=c∂t þ ipz=ℏÞfExp
eiφð∂ρ − l=ρÞfExp

�
: ð17Þ

This bispinor describes the state with the component Jz of
the total angular momentum equal to ℏðlþ 1=2Þ. Like in
the case of Bessel beams, the alternative choice ϕ ¼
ð0; fExpÞ produces the solution with the total angular
momentum equal to ℏðl − 1=2Þ.
It is not obvious that our exponential wave packets, in

contrast to the LG solution, have no counterpropagating
components. This property will be proved by expanding
fExp into Bessel solutions.
Expansion of the exponential wave packets into Bessel

solutions.—Every scalar solution of the KG equation can be
written as a superposition of Bessel solutions since they
form a complete set. To obtain the exponential wave packet
(15) it suffices to include only Bessel solutions (10) with
fixed l and pz. Such a superposition has the following
general form:

fExpðρ;φ; z; tÞ ¼
Z

∞

E∥

dEe−iðEt−pzzÞ=ℏeilφ

× gðEÞJl
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − E2
∥

q
ρ=ℏc

�
; ð18Þ

where Ejj ¼ γmc2 is the energy associated with the
momentum in the z direction. The factor e−iðEt−pzzÞ=ℏ in
this formula guarantees that fExp describes positive energy
solutions (electrons and not positrons) and that there are no
counterpropagating components.
As we have shown in Ref. [16], there are several choices

of the spectral function gðEÞ that allow for an analytic
evaluation of the integral and lead to exponential wave
packets. The simplest exponential wave packet (15) is
obtained for

FIG. 1. Normalized modulus jψ j of the wave function (15) as a
function of ρ=ƛ plotted for l ¼ 10 and different values of the
parameter b.
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gðEÞ ¼ b
e−bE=Ejj

Ejj

�
E − Ejj
Eþ Ejj

�jlj=2
: ð19Þ

The integration over E can be performed with the use of the
formula 6.646.1 in Ref. [17]. The maximum of the spectral
function (19) is located at E ¼ γmc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jlj=bp

. When b
increases, the spectral function tends to δðE − EjjÞ. This is
illustrated in Fig. 2 where the normalized spectral function
gNðEÞ ¼ gðEÞ= R dEgðEÞ is plotted for different values of
b. Therefore, the parameter b controls the monochroma-
ticity of the wave. For very large values of b the exponential
beam approaches the Bessel wave packet. However, this
convergence is not uniform; it holds only for restricted
values of ρ and t. The character of the dependence on the
parameter b, shown in Figs. 1 and 2, may be viewed as a
manifestation of the uncertainty principle; the broader the
wave packet in coordinate space, the sharper the spectrum.
Nonrelativistic limit of the exponential wave packet.—

The nonrelativistic limit is obtained here in a more
complicated way than in the case of the function fLG.
Before evaluating the limit c → ∞, in addition to filtering
out the rest mass oscillations one must introduce now also a
c-dependent rescaling of the parameter b ¼ βc2 and change
the normalization of the wave function. The resulting
solution of the Schrödinger equation is simply the non-
relativistic LG wave packet (13) with n ¼ 0,

ψLGðρ;φ; z; tÞjn¼0 ¼ exp ð−ip2
zt=2mℏÞ exp ðipzz=ℏÞ

×
ρjljeilφ

aðtÞjljþ1
exp

�
−

ρ2

aðtÞ
�
; ð20Þ

where aðtÞ contains now the parameter β, namely, aðtÞ ¼
2βðℏ=mÞ2 þ 2itℏ=m.
Vorticity and vortex lines.—In the nonrelativistic

description there is no ambiguity in defining the velocity
v of the probability flow,

v ¼ ℏ
m
Imðψ�∇ψÞ

ψ�ψ
¼ ℏ

m
∇S: ð21Þ

Wave functions endowed with orbital angular momentum
have a characteristic phase S ¼ lφ. Owing to the singular
character of S, the vorticity w ¼ ∇ × v is localized on
vortex lines that undergo intricate time evolution dictated
by the Schrödinger equation [18].
In the relativistic theory the velocity vD is obtained from

the Dirac four-current jμ ¼ Ψ̄γμΨ,

vD ¼ c
Ψ̄γΨ
Ψ†Ψ

¼ c
ϕ†σϕ − χ†σχ

ϕ†ϕþ χ†χ
: ð22Þ

In contrast to the nonrelativistic case, the velocity is now
not a gradient of a phase. As a result, the vorticity wD ¼
∇ × vD is not concentrated on vortex lines but it is
continuously spread all over space (see Fig. 3). We shall
resolve the seeming discrepancy between the nonrelativ-
istic and relativistic behavior of vorticity with the use of the
Gordon decomposition [19] of the Dirac current into the
orbital part and the spin part, j ¼ jorb þ jspin,

jorb ¼
2ℏ
m

Imðϕ†∇χÞ; ð23aÞ

jspin ¼
ℏ
m
½∇ × Reðϕ†σχÞ − ∂tReðϕ†σχÞ�: ð23bÞ

Near the beam center the solutions of the Dirac equations
studied here behave similarly and we use the Bessel
solution (11) to make the calculations simple. In this
case the leading part of the orbital velocity vorb ¼
jorb=ðϕ†ϕþ χ†χÞ, in the limit c → ∞, is

vorb ≈
ℏl
m

�
−

y
ρ2

;
x
ρ2

; 0

�
: ð24Þ

This singular form of the velocity produces the vortex line
along the z axis, in full agreement with the nonrelativistic
formula (21). The vorticity localized on the vortex line
associated with the orbital velocity is, however, exactly

FIG. 2. Normalized spectral functions gNðEÞ plotted for l ¼ 10
and different values of the parameter b.

FIG. 3. Distribution of vorticity in the exponential beam.
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canceled by the opposite vorticity associated with the spin
part of the velocity. As a result, the vorticity in the wave
packet described by the Dirac equation has no singularities;
it is distributed continuously in space.
Discussion.—The differences between the nonrelativistic

and relativistic quantum theory of electrons are so sub-
stantial that they completely invalidate some conclusions
based on the Schrödinger equation. The first difference is
the nonexistence of relativistic electron wave packets with
fixed orbital angular momentum. The second difference is
the presence of the relativistic length parameter—Compton
wavelength—which determines the behavior at large dis-
tances from the center. The third difference is lack of
freedom to manipulate separately orbital angular momen-
tum and spin. Finally, there is an open problem of vortex
lines in the relativistic case that boils down to the question:
Which current, total (no vortex lines) or orbital (with vortex
lines), is observed in experiments?
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