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We describe a quantum state transfer protocol, where a quantum state of photons stored in a first cavity can
be faithfully transferred to a second distant cavity via an infinite 1D waveguide, while being immune to
arbitrary noise (e.g., thermal noise) injected into thewaveguide.We extend themodel and protocol to a cavity
QED setup, where atomic ensembles, or single atoms representing quantummemory, are coupled to a cavity
mode. We present a detailed study of sensitivity to imperfections, and apply a quantum error correction
protocol to account for random losses (or additions) of photons in the waveguide. Our numerical analysis is
enabled bymatrix product state techniques to simulate the complete quantum circuit, which we generalize to
include thermal input fields. Our discussion applies both to photonic and phononic quantum networks.
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Introduction.—The ability to transfer quantum states
between distant nodes of a quantum network via a quantum
channel is a basic task in quantum information processing
[1–4]. An outstanding challenge is to achieve quantum state
transfer [5,6] (QST) with high fidelity despite the presence
of noise and decoherence in the quantum channel. In a
quantum optical setup, the quantum channels are realized
as 1D waveguides, where quantum information is carried
by “flying qubits” implemented either by photons in the
optical [7–9] or microwave regime [10–13], or phonons
[14,15]. Thus, imperfections in the quantum channel
include photon or phonon loss, and, in particular for
microwave photons and phonons, a (thermal) noise back-
ground [16]. In this Letter, we propose a QST protocol and
a corresponding quantum optical setup which allow for
state transfer with high fidelity, undeterred by these
imperfections. A key feature is that our protocol and setup
are a priori immune to quantum or classical noise injected
into the 1D waveguide, while imperfections such as
random generation and loss of photons or phonons during
transmission can be naturally corrected with an appropriate
quantum error correction (QEC) scheme [17].
The generic setup for QST in a quantum optical network

is illustrated in Fig. 1 as transmission of a qubit state from a
first to a second distant two-level atom via an infinite 1D
bosonic open waveguide. The scheme of Fig. 1(a) assumes
a chiral coupling of the two-level atoms to the waveguide
[18,19], as demonstrated in recent experiments with atoms
[20] and quantum dots [21]. The atomic qubit is transferred
in a decay process with a time-varying coupling to a right-
moving photonic (or phononic) wave packet propagating in
the waveguide, i.e., ðcgjgi1 þ cejei1Þj0ip → jgi1ðcgj0ip þ
cej1ipÞ where ji1 and jip denote the atomic and channel
states. The transfer of the qubit state is then completed by

reabsorbing the photon (or phonon) in the second atom via
the inverse operation, essentially mimicking the time-
reversed process of the initial decay. Such transfer proto-
cols have been discussed in the theoretical literature
[5,6,22–25], and demonstrated in recent experiments [7].

(a)

(b)

(c) (d)

FIG. 1. Quantum state transfer via a noisy waveguide. (a) QST
where qubits are coupled directly with chiral coupling to a
waveguide representing the quantum channel. (b) QST in a cavity
QED setup, where atoms representing qubits are coupled to the
waveguide with a cavity as mediator. (c) Fidelity F for QST of a
qubit as a function of photon occupation nth representing a
thermal noise injected into the waveguide for setups (a) and (b).
For the protocol described in the text, setup (b) is robust to
injected noise. (d) “Write” of a quantum state from cavity 1 to a
temporal mode in the (noisy) waveguide, and “Read” back to
cavity 2 as a linear multimode encoder and decoder with
encoding [decoding] functions κ1ðtÞ [κ2ðtÞ] (see text).
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A central assumption underlying these studies is, however,
that the waveguide is initially prepared in the vacuum state;
i.e., at zero temperature, and—as shown in Fig. 1(c)—the
fidelity for QST (formally defined in the Supplemental
Material [26]) will degrade significantly in the presence of
noise, e.g., thermal [16]. Below, we show that a simple
variant of the setup with a cavity as mediator makes the
QST protocol immune against arbitrary injected noise
[5,34] [cf. Fig. 1(b)]. Robust QST also provides the basis
for distribution of entanglement in a quantum network.
Photonic quantum network model.—We consider the

setup illustrated in Fig. 1(b), where each “node” consists
of a two-level atom as qubit coupled to a cavity mode. We
assume that the cavity QED setup is designed with a chiral
light-matter interface with coupling to right-moving modes
of the waveguide [35]. In the language of quantum optics,
the setup of Fig. 1(b) is a cascaded quantum system [37],
where the first node is unidirectionally coupled to the second
one. The dynamics is described by a quantum stochastic
Schrödinger equation (QSSE) [37] for the composite system
of nodes and waveguide as iðd=dtÞjΨðtÞi ¼ HðtÞjΨðtÞi
(ℏ ¼ 1). The Hamiltonian is HðtÞ ¼ P

j¼1;2HnjðtÞ þ VðtÞ
with HnjðtÞ ¼ igjðtÞða†jσ−j − H:c:Þ the Jaynes-Cummings
Hamiltonian for node j ¼ 1, 2 in the rotating wave approxi-
mation (RWA). Here, aj are annihilation operators for the
cavity modes and σj’s are Pauli operators for the two-level
atoms with levels jgji, jeji. We assume that the cavities are
tuned to resonancewith the two-level atoms (ωc ¼ ωeg), and
the Hamiltonian is written in the rotating frame. The
coupling of the first and second cavity (located at
x1 < x2) to the right-moving modes of the channel is
described by the interaction Hamiltonian

VðtÞ ¼ i
X

j¼1;2

ffiffiffiffiffiffiffiffiffiffi
κjðtÞ
2π

r Z

B
dωb†RðωÞeiðω−ωcÞt−iωxj=caj − H:c:

≡ ið
ffiffiffiffiffiffiffiffiffiffi
κ1ðtÞ

p
b†RðtÞa1 þ

ffiffiffiffiffiffiffiffiffiffi
κ2ðtÞ

p
b†Rðt − τÞeiϕa2 − H:c:Þ;

ð1Þ
in the RWA. Here, bRðωÞ denotes the annihilation operators
of the continuum of right-moving modes with frequency ω
within a bandwidth B around the atomic transition fre-
quency, c is the velocity of light, and κ1;2ðtÞ is a decay rate to
the waveguide. In the second line of Eq. (1), we have
rewritten this interaction in terms of quantum noise oper-
ators bRðtÞ satisfying white noise commutation relations
½bRðtÞ; b†RðsÞ� ¼ δðt − sÞ. The parameter τ ¼ d=c, with
d ¼ x2 − x1 > 0, denotes the time delay of the propagation
between the two nodes, and ϕ ¼ −ωcτ is the propagation
phase. For a cascaded quantum system with purely
unidirectional couplings, τ and ϕ can always be absorbed
in a redefinition of the time and phase of the second node.
Noise injected into the waveguide is specified by the
hierarchy of normally ordered correlation functions of

bRðtÞ. In particular, the Fourier transform of the correlation
function hb†RðtÞbRðsÞi provides the spectrum of the incident
noise SðωÞ, which for white (thermal) noise corresponds to
hb†RðtÞbRðsÞi ¼ nthδðt − sÞwith occupation number nth and
flat spectrum SðωÞ ¼ nth.
Quantum state transfer protocol.—To illustrate immun-

ity to injected noise in QST, first, we consider a minimal
model of a pair of cavities coupled to the waveguide. The
quantum Langevin equations (QLEs) for the annihilation
operators of the two cavity modes a1;2ðtÞ in the Heisenberg
picture read [26]
da1
dt

¼−
1

2
κ1ðtÞa1ðtÞ−

ffiffiffiffiffiffiffiffiffiffi
κ1ðtÞ

p
bRðtÞ;

da2
dt

¼−
1

2
κ2ðtÞa2ðtÞ−

ffiffiffiffiffiffiffiffiffiffi
κ2ðtÞ

p
½bRðtÞþ

ffiffiffiffiffiffiffiffiffiffi
κ1ðtÞ

p
a1ðtÞ�: ð2Þ

These equations describe the driving of the first cavity by
an input noise field bRðtÞ [38], while the second cavity is
driven by both bRðtÞ and the first cavity. We can always
find a family of coupling functions κ1;2ðtÞ, satisfying the
time-reversal condition κ2ðtÞ ¼ κ1ð−tÞ [see inset of
Fig. 1(a)], which achieves a mapping

a1ðtiÞ → −a2ðtfÞ; ð3Þ
i.e., the operator of the first cavity mode at initial time ti is
mapped to the second cavity mode at final time tf, with no
admixture from bRðtÞ [26]. In other words, an arbitrary
photon superposition state prepared initially in the first
cavity can be faithfully transferred to the second distant
cavity without being contaminated by incident noise. This
result holds without any assumption on the noise statistics.
It is intrinsically related to the linearity of the above QLEs,
which allows the effect of noise acting equally on both
cavities to drop out by quantum interference. Thus, the
setup can be combined with other elements of linear optics,
such as beam splitters [26].
Robustness of QST to injected noise generalizes

immediately to more complex systems representing effec-
tive “coupled harmonic oscillators.” We can then add
atomic ensembles of N two-level atoms represented by
atomic hyperfine states [3,39,40] to the first and second
cavities (j ¼ 1, 2). Spin excitations in atomic ensembles
[41,42], generated by the collective spin operator Sþj ¼
ð1= ffiffiffiffi

N
p ÞPN

i¼1 σ
þ
i;j with i the sum over atomic spin-

operators of node j, are again harmonic for low densities.
Moreover, they can be coupled in a Raman process to the
cavity mode, Hnj ¼ ~gjðtÞðSþj aj þ H:c:Þ, as familiar from
the read and write of photonic quantum states to atomic
ensembles as quantum memory [43]. This provides a way
of getting an effective time-dependent coupling to the
waveguide in a setup with constant cavity decay. Thus,
our protocol generalizes to the transfer of quantum states
stored as a long-lived spin excitation in a first atomic
ensemble to a second remote ensemble [26].
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Returning to the setup of Fig. 1(b), with a single atom as
qubit coupled to a cavity mode, we achieve—in contrast to
the setup of Fig. 1(a)—QST immune to injected noise in a
three step process. (i) We first map the atomic qubit state
cgjgi1 þ cejei1 to the cavity mode cgj0i1 þ cej1i1 with the
cavity decoupled from the waveguide [44]. (ii) With atomic
qubits decoupled from cavities, we transfer the photon
superposition state to the second cavity as above [45].
(iii) We perform the time-inverse of step (i) in the second
node. This QST protocol generalizes to several atoms as a
quantum register representing an entangled state of qubits,
which can either be transferred sequentially or mapped
collectively to a multiphoton superposition state in the
cavity, to be transferred to the second node [46]. As
depicted in Fig. 1(d), we can understand our QST protocol
in the chiral cavity setup [Fig. 1(b)], consisting of a write
operation of the qubit in the first cavity to the waveguide as
a quantum data bus, followed by a read into the second
cavity. This write and read are both linear operations on the
set of operators consisting of cavity and waveguide modes,
or as an encoder and decoder into temporal modes specified
by κ1;2ðtÞ, and physically implemented by the chiral cavity-
waveguide interface.
Numerical techniques.—We now study the sensitivity of

the above protocol to errors. Imperfections may arise from
inexact external control parameters including timing and
deviations from perfect chirality. Moreover, loss or addition
of photons can occur during propagation. Below, we
describe a QEC scheme which corrects for such single
photon errors.
A study of imperfections in QST will necessarily be

numerical in nature, as it requires solution of the QSSE
with injected noise accounting for nonlinearities in atom-
light coupling. Beyond Eq. (1), the Hamiltonian must
include coupling to both right- and left-propagating modes
in the waveguide, and should account for possible cou-
plings of waveguide and cavities to additional reservoirs
representing decoherence [26]. We have developed and
employed three techniques to simulate the complete
dynamics of the quantum circuits as depicted in
Figs. 1(a) and 1(b). First, we use matrix product states
techniques to integrate the QSSE discretized in time steps,
as developed in Ref. [48], which we generalize to include
injected quantum noise. Our method allows a general input
field to be simulated using purification techniques, by
entangling time-bins of the photonic field with ancilla
copies in the initial state (for related techniques developed
in condensed matter physics, see Ref. [49]). This method
also allows the study of non-Markovian effects (i.e., for
finite retardation τ > 0) in the case of imperfect chiral
couplings, and is well suited to represent various kinds of
noise. Second, we solve the master equation describing the
nodes, which allows for efficient simulations valid in the
Markovian limit. Finally, to simulate the QST in nonchiral
setups as described at the end of this Letter, we solve the

dynamics of the nodes and of a discrete set of waveguide
modes, following Ref. [23]. For a detailed description of
the complete model and numerical methods, we refer to
Ref. [26], and present, below, our main results assuming
thermal injected noise nth.
Sensitivity to coupling functions κ1;2ðtÞ.—In Figs. 2(a)

and 2(b), we study the sensitivity of QST to the functions
κ1;2ðtÞ for the minimal model of nodes represented by
cavities. Figure 2(a) shows the effect of the protocol
duration T ¼ tf − ti which, in the ideal case, is required
to fulfill T ≫ 1=κmax, with κmax the maximum value of
κ1;2ðtÞ. For finite durations, the effect on the fidelity scales
linearly with the noise intensity but quickly vanishes for
κmaxT ≳ 10, above which F ≥ 0.99. In all other figures of
this work, we use κmaxT ¼ 20. In Fig. 2(b), we show the
effect of an imperfection δτ in the timing of the coupling
functions, namely, κ2ðtÞ ¼ κ1ðδτ − tÞ. The digression from
unity is quadratic in δτ but linear in noise intensity. This
result illustrates that only the proper decoding function
allows one to unravel the quantum state emitted by the first
cavity on top of the injected noise. Note that, in addition to
errors in the coupling functions, the fidelity is also sensitive
to the frequency matching of the cavities [50], which we
discuss in [26].

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Role of imperfections. (a) Effect on the fidelity of a
finite transfer time T ¼ tf − ti, and (b) of an imperfect timing of
κ2ðtÞ. (c) Fidelity as a function of ϕ for different β factors and
κmaxτ ≈ 0 (see text). Solid lines: nth ¼ 0. Dashed lines:
nth ¼ 0.25. The fidelity is maximal when ϕ is a multiple of π.
(d) By increasing κmaxτ for ϕ ¼ 0 the fidelity decreases. (e) QEC
with the setup subject to waveguide and cavity losses. (f) QEC
with the setup coupled to a reservoir with photon occupation
n0th ¼ 1. Black: no error correction. Red: correction against single
photon losses. Blue: correction against single photon losses or
additions. Solid lines: nth ¼ 0, κ0 ¼ 0. Full circles: nth ¼ 0.5,
κ0 ¼ 0. Empty circles: nth ¼ 0, κf ¼ 0.
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Imperfect chirality.—For an optical fiber with chirally
coupled resonators [36], the nodes emit only a fraction
β < 1 of their excitations in the right direction. The
dynamics, then, also depends on the propagation phase
ϕ [18] and on the time delay τ. As illustrated in Fig. 2(c),
the effect of imperfect chirality in the Markovian regime
(κmaxτ ≈ 0) crucially depends on ϕ, as a consequence of
interferences between the photon emissions of the two
cavities in the left direction. In particular, for ϕ ¼ 0, they
interfere destructively, leading to a higher fidelity. This
interference decreases for finite values of κmaxτ, as shown in
Fig. 2(d).
Quantum error correction.—In contrast to “injected”

noise, loss and injection of photons occurring during
propagation between the two cavities represent
decoherence mechanisms, which affect the fidelity of the
protocol [2]. Such errors can be corrected in the framework
of QEC. Instead of encoding the qubits in the Fock states
j0i and j1i, we use multiphoton states, with the requirement
that the loss or addition of a photon projects them onto a
new subspace where the error can be detected and cor-
rected. A possibility is to use a basis of cat states, i.e.,
superposition of coherent states [51,52], where a photon
loss only induces a change of parity of the photon number
[53]. While we present the efficiency of QSTwith cat states
in Ref. [26], here, we use a basis of orthogonal photonic
states for the qubit encoding [17].
We first consider a protocol protecting against single

photon losses. Here, the state of the first qubit is mapped to
the first cavity as cgjgi1 þ cejei1 → cgjþi1 þ cej−i1,
where the cavity logical basis j�ij ¼ ðj0ij �

ffiffiffi
2

p j2ij þ
j4ijÞ=2 has even photon parity. This unitary transformation
can be realized with optimal control pulses driving the
qubit and the cavity while using the dispersive shift
between the qubit and the cavity mode as nonlinear element
[53]. Waveguide losses, with rates κf, can be modeled with
a beam splitter with transmission probability expð−κfτÞ,
whereas the rate of cavity losses is denoted κ0. The single
photon loss probability is, then, P ¼ 1 − expð−κfτ − κ0TÞ.
The density matrix ρf of the second cavity at the end of the
protocol reads

ρf ¼ jΨ0ihΨ0j þ PjΨ−1ihΨ−1j þOðP2Þ; ð4Þ

where the unnormalized states jΨ0i and jΨ−1i, written
explicitly in Ref. [26], have even or odd parity, respectively,
and satisfy jΨ−1i ¼ a2jΨ0i. The state jΨ0i corresponds to
the case where no stochastic photon loss occurred, whereas
the state jΨ−1i is obtained if one photon was lost in the
process. The last step of the protocol consists in measuring
the photon number parity in the second cavity, and—
conditional on the outcome—apply unitary operations
transferring the photon state to qubit 2. As shown in
Fig. 2(e), this encoding significantly improves the fidelity

for small losses P ≪ 1, up to a threshold value P ≈ 0.29.
Note that both protocols are insensitive to injected noise.
Now, we consider a situation where the waveguide is

coupled to a finite temperature reservoir with n0th ¼ 1
thermal occupation number which stochastically adds
and absorbs photons. Here, the qubit state is encoded as
cgjþi1 þ cej−i1, where j�i1 ¼ ðj0i1 �

ffiffiffi
2

p j3i1 þ j6i1Þ=2
have photon number 0 modulo 3. The state ρf after the
transfer is a mixture of jΨkihΨkj with k ¼ −1; 0;þ1
corresponding to the cases of a single photon loss, of no
photon loss or addition, and of a single photon addition.
These states satisfy jΨ−1i ¼ a2jΨ0i and jΨþ1i ¼ a†2jΨ0i
and are distinguishable by measurement of the photon
number modulo 3. In the limit of small error probabilities,
one retrieves the original qubit state by applying a unitary
operation conditioned on the measurement outcome. In
Fig. 2(f), we show that this protocol corrects the errors for
P ≪ 1 independently of injected noise intensity. This
approach extends to an arbitrary number of photon losses
and additions, although at the cost of a lower range of
achievable P [17].
Closed systems.—Our results can also be observed in

closed systems [cf. Fig. 3(a)], where two cavities are
coupled, for instance, via a finite optical fiber or a micro-
wave transmission line [54]. Note that, in circuit QED
setups, time-dependent couplings κjðtÞ can be realized via
tunable couplers [12,50,55]. This system is not chiral, as
the dynamics of the first cavity can be perturbed by
reflections from the second one. We numerically demon-
strate robustness against noise, which, here, is represented
as initial occupation of the waveguide. In addition, we
consider the effect of Kerr nonlinearities; i.e., we add terms
−χa†ja

†
jajaj which are relevant for circuit QED setups [53]

to the Hamiltonian [26]. The results are presented in
Fig. 3(b) with each (discrete) waveguide mode initially
in a coherent state jαi. QST becomes robust against noise in
the transition from the cavity as an effective two-level
system (χ → ∞) to perfect harmonic oscillator (χ → 0).
Conclusion.—Robustness to arbitrary injected noise in

transferring a quantum state between two cavities relies on
the linearity of the write and read into temporal modes
[cf. Fig. 1(d)], with quantum noise canceled by quantum

(a) (b)

FIG. 3. QST in noncascaded systems. (a) QST in a closed
system with two cavities coupled to a finite waveguide. (b) Fidel-
ity as a function of the cavity nonlinearities χ and for different
initial occupation of the waveguide. The fidelity approaches unity
in the linear limit χ → 0.
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interference. While we have focused on QST between two
distant cavity modes here, our approach generalizes to a
setup involving many nonlocal bosonic resonator modes
[26], which can be realized with various physical platforms,
and as hybrid systems.
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Note added.—A related setup and protocol have been
proposed in an independent work by Z. L. Xiang et al. [57].
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