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Despite rapidly growing interest in harnessing machine learning in the study of quantum many-body
systems, training neural networks to identify quantum phases is a nontrivial challenge. The key challenge is
in efficiently extracting essential information from the many-body Hamiltonian or wave function and
turning the information into an image that can be fed into a neural network. When targeting topological
phases, this task becomes particularly challenging as topological phases are defined in terms of nonlocal
properties. Here, we introduce quantum loop topography (QLT): a procedure of constructing a
multidimensional image from the “sample” Hamiltonian or wave function by evaluating two-point
operators that form loops at independent Monte Carlo steps. The loop configuration is guided by the
characteristic response for defining the phase, which is Hall conductivity for the cases at hand. Feeding
QLT to a fully connected neural network with a single hidden layer, we demonstrate that the architecture
can be effectively trained to distinguish the Chern insulator and the fractional Chern insulator from trivial
insulators with high fidelity. In addition to establishing the first case of obtaining a phase diagram with a
topological quantum phase transition with machine learning, the perspective of bridging traditional
condensed matter theory with machine learning will be broadly valuable.

DOI: 10.1103/PhysRevLett.118.216401

Introduction.—Machine learning techniques have been
enabling neural networks to recognize and interpret big
data sets of images and speeches [1]. Through supervised
training with a large set of data, neural networks “learn” to
recognize key features of a universal class. Very recently,
rapid and promising development has been made from this
perspective on numerical studies of condensed matter
systems, including dynamical systems [2–6] as well as
classical and quantum systems undergoing phase transi-
tions [7–13]. Also established is the theory connection to
the renormalization group [14,15]. Exciting successes in
the application of machine learning to symmetry-broken
phases [7–10] may be attributed to the locality of the
defining property of the target phases: the order parameter
field. The snapshots of order parameter configuration form
images readily fed into neural networks, well developed to
recognize patterns in images.
Unfortunately, many novel states cannot be detected

through a local order parameter. All topological phases are
intrinsically defined in terms of nonlocal topological
properties. Not only do many-body localized states of
growing interest [16] fit into this category, but even a
superconducting state fits in here since the superconducting
order parameter explicitly breaks the particle number
conservation [17]. In order for neural networks to learn
and recognize such phases, we need to supply them with
“images” that contain relevant nonlocal information.
Clearly, information based on a single site is insufficient.
One approach to the topological phase was to add complex-
ity to the neural network architecture and use layers of
convolutional filters to detect local constraints in the

presence of translational symmetry, targeting a single
topological phase at a time [7,10]. Another approach
was to detect the topological edge states [13]. In addition,
an ensemble of the Green’s function was used to detect
charge-ordered phases [9].
Here, we introduce quantum loop topography (QLT): a

procedure that designs and selects the input data based on
the target phases of interest guided by relevant response
functions. We focus on the fermionic topological phases,
but the procedure can be generalized to other situations that
are not captured by purely local information as all physi-
cally meaningful states are characterized by their response
functions. The subject of topological phases of matter
has grown with the appeal that topological properties are
nonlocal and hence, more robust [18–20]. Ironically, this
attractive feature makes it difficult to detect and identify
topological phases even in numerics. Importantly, detection
of strongly correlated topological phases as fractional
quantum Hall states [21,22], fractional Chern insulators
[23,24], and quantum spin liquids [25–27] requires arduous
calculations of topological entanglements entropies
[28,29]. On the other hand, quantization [21–24,30–34]
is a natural theme of topological states, and one may
wonder whether there is an intelligent way to detect them
due to the discreteness in defining properties. In this Letter,
we demonstrate that QLT enables even a rather simple
architecture consisting of a fully connected neural network
with a single hidden layer to recognize the Chern insulator
and the fractional Chern insulator states and rapidly
produce a phase diagram containing topological quantum
phase transition (TQPT). We then discuss insights into the
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effectiveness of QLT and future directions based on its
versatility.
Quantum loop topography and our algorithm.—The

procedure we dubbed QLT constructs an input image from
a given Hamiltonian or many-body wave function that
contains a minimal but sufficient amount of nonlocal
information. The response function that characterizes the
phase of interest determines the geometry of the loop objects
that enter QLT. But instead of a brute-force evaluation of the
response functions, we use QLT obtained from instances of
Monte Carlo calculations to train and utilize a network.
For Chern insulators, the relevant response function is

the Hall conductivity. Interestingly, Kitaev [35] pointed out
that

σxy ¼
e2

h
1

N

X
4πiPjkPklPljS△jkl ð1Þ

for free fermion systems [36], where Pij ≡ hc†i cji is the
equal-time two-point correlation function between sites i
and j,S△jkl is the signed area of triangle jkl, andN is the total
number of sites. Taking hints from Eq. (1), we use triangular
loops to define QLT for Chern insulators. But instead of the
full expectation value for two-point correlation functions in
Eq. (1), which are costly to evaluate (requiring many
Monte Carlo steps walking down the Markov chain), we
evaluate the bilinear operator with a single Monte Carlo
sample α, defining ~Pjkjα ≡ hc†jckiα. Further, we note that
smaller triangles dominate in a gapped system and keep the
loops of linear dimension d ≤ dc, where dc is the cutoff.
Now, we define QLT to be a quasi-two-dimensional

“image" of the DðdcÞ-dimensional vector of complex
numbers assigned to each lattice site j. Each entry of this
vector is associated with a distinct triangle cornered at site
j, which defines a chained product

~Pjkjα ~Pkljβ ~Pljjγ; ð2Þ

where k and l are two other sites of the particular triangle,
and ~P’s are evaluated at three independent Monte Carlo
steps without averaging over Markov chain. DðdcÞ is the
total number of triangles, with d ≤ dc assigned to each site
(see Fig. 1). This way, QLT can be systematically expanded
to include longer-ranged correlations by increasing the
cutoff dc until convergence.
By construction,QLTis quiteversatile. Firstly,QLTcanbe

obtained for and mapped between different lattice geometry,
which only enters through DðdcÞ. Secondly, the entire
procedure takes place in a real space without the need for
diagonalization or flux insertion and does not depend
on translational invariance. Hence, QLT should naturally
accommodate heterogeneity, disorder, and interaction.
Finally, it is clear that the strategy underlying QLT con-
struction that we have laid out can be generalized to other
novel phases, such as Z2 topological order, quantum spin
Hall insulator, or superconductivity [38]. In the rest of this
Letter, we use variational Monte Carlo (VMC) calculations,
without loss of generality, to build QLT by sampling the
many-body ground states of interest at randomly selected
Monte Carlo steps (see Supplemental Material [37]).
Once QLT is obtained for a given model, we feed it to a

neural network (Fig. 1). For this, we design a feed-forward
fully connected neural network with only one hidden layer
consisting of n ¼ 10 sigmoid neurons. The network takes
QLT as an input x, and each neuron processes the input
through independent weights and biases wxþ b. After the
sigmoid function, the outcome is fed forward to be processed
by the output neuron. The final output y corresponds to
the neural network’s judgement whether the input QLT is
topological. We use cross entropy as the cost function with
L2 regularization to avoid overtraining and a mini-batch size
of 10 [1]. For the rest of this Letter, we use randomly mixed
20 000 data samples within the VMC Metropolis of the
topological and trivial phases as the training group. We
reserve a separate group of 4000 data samples (also half
trivial and half topological) for validation purposes, includ-
ing learning speed control and termination [1]. Once the
machine learning is successful, the trained neural network
can rapidly process QLTs from different parts of the phase
space to yield a phase diagram. In order to establish a level of
confidence on the trained network’s assessment of whether
the system is topological or not, we process 2000 QLTs at
each point and take the ratio p of the “topological” output,
i.e., y > 0.5. When p is close to 1 for topological phase
and 0 for trivial phase, it indicates that even a single QLT
can reliably land a trustworthy detection.
Topological quantum phase transition in a free fermion

model.—We first apply the QLT-based machine learning to
the TQPT between the trivial insulator and the Chern
insulator. Consider the following tight-binding model on a
square lattice:

FIG. 1. Schematic illustration of our machine learning algo-
rithm that consists of QLTand a neural network architecture. QLT
for each site j consists of 4 loops of linear dimension d ¼ 1. One
loop of d ¼ 3 is also shown for illustration. QLTof d ≤ dc form a
DðdcÞ-dimensional vector for each site j, e.g., Dð1Þ ¼ 4 on a
square lattice.
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HðκÞ ¼
X

~r

ð−1Þyc†~rþx̂c~r þ ½1þ ð−1Þyð1 − κÞ�c†~rþŷc~r

þ ð−1Þy iκ
2
½c†~rþx̂þŷc~r þ c†~rþx̂−ŷc~r� þ H:c:; ð3Þ

where ~r ¼ ðx; yÞ (see Fig. 2), and 0 ≤ κ ≤ 1 is a tuning
parameter. The κ ¼ 1 limit is the π-flux square lattice
model for a Chern insulator with Chern numberC ¼ 1 [31],
while the κ ¼ 0 limit amounts to decoupled two-leg
ladders. HðκÞ interpolates between the Chern insulator
and the trivial insulator, with a TQPT at κ ¼ 0.5. To see
this, Fourier transform the Hamiltonian to momentum
space

HðκÞ ¼
X

k

½2 cos ky þ 2i sin kyð1 − κ þ κ sin kxÞ�c†k;Ack;B

þ 2 cos kxðc†k;Ack;A − c†k;Bck;BÞ þ H:c:; ð4Þ

where A and B label the two sublattices, and note that in
this two-band model with two Dirac points at ð�π=2; π=2Þ,
one of the Dirac masses changes sign across κ ¼ 0.5.
Our complete knowledge of the phase diagram makes

Eq. (3) an ideal testing ground for our algorithm. Hence, we
implement supervised machine learning using two deep-
in-phase models of κ ¼ 1.0 (Chern insulator) and κ ¼ 0.1
(trivial insulator) for training [39]. The system size is
12 × 12 lattice spacings unless noted otherwise. First,
we establish that indeed, single-site-based inputs of the
fermion occupation configurations nð~rÞ ¼ c†~rc~r fail to
transmit the topological information to the neural network,
as we expected. With nð~rÞ as inputs, the learning is
inefficient, signaled by high yields in the cost function
[1]. Moreover, as shown in Fig. 3, even after a long period
of training, the neural network keeps incorrectly judging
the system to be a trivial insulator for all values of κ, except
for κ ¼ 1.0, where the result returns > 80% “nontrivial.”

This indicates that the neural network unfortunately does
not pick up the universal features about the topological
phase, but rather memorizes the details of the specific
model at κ ¼ 1.0.
The contrast in the results based on QLT input is striking.

Figure 3 shows that the trained network’s assessment
achieves > 99.9% accuracy deep in either the topological
phase or the trivial phase, even with dc ¼ 2. Moreover,
even though we have provided the training group with only
large-gap models in both the topological and trivial phases
focusing on identifying phases [37], we find a nonanalyt-
ical behavior in p as a function of κ at the critical point (see
Fig. 3 inset).
Generalizations.—Next, we consider a fractional Chern

insulator (FCI) as an example of a strongly correlated
topological phase. Here, the ν ¼ 1=3 FCI is represented by
a VMC wave function that is the free fermion wave
function of the model in Eq. (3) raised to the third power
[40]. Surprisingly, the neural network trained on the non-
interacting parent Chern insulator already serves as a “poor
man’s network” (see the inset of Fig. 4). This network
recognizes that the FCI phase is distinct from the parent
Chern insulator, and hence, it only gives p ∼ 0.01
“nontrivial” response for the FCI phase. Nevertheless, it
also notices that FCI is a topologically distinct state from
the trivial insulator since p ∼ 0.01 is large enough to
exclude statistical error. Once trained with the FCI wave
function at two reference points, κ ¼ 0.1 for trivial and
κ ¼ 1.0 for FCI, the network once again detects the FCI
phase with high accuracy [see Fig. 4].
Remarkably, the network automatically recognizes topo-

logical degeneracy. Even if we train the network with only
one of the degenerate ground states (GS#1 in Fig. 4) in the

FIG. 2. Model illustration of Eq. (3). The unit cell consists of
two sublattice sites, A and B. Hopping strengths are different for
horizontal and vertical bonds and staggered. The diagonal
hopping is iκ (−iκ) along (against) the arrow. The red arrows
denote a triangle that defines the operators of our QLT.

FIG. 3. The ratio p of the “topological” response from the
neural network on the model in Eq. (3) over the parameter region
κ ∈ ½0.1; 1; 0�. The neural network is trained, with κ ¼ 0.1 for
y ¼ 0, and κ ¼ 1 for y ¼ 1. The green square symbols represent
the results using fermion occupation configurations as an input
data. The red dashed line marks the expected topological phase
transition at κ ¼ 0.5. The inset: an enlarged view over the critical
region 0.4 ≤ κ ≤ 0.6. dc ¼ 2 for all.
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topological phase, it correctly assesses the topological
nature of the two other ground states that are related to
GS#1 by flux threading. The network also detects a TQPT
at 0.67 ≤ κc ≤ 0.77. The uncertainty in the critical value κc
is a finite-size effect on the quasidegeneracy as is clear from
the convergence upon increasing the system size. The fact
that κc > 0.5 when the single-particle gap closes at κ ¼ 0.5
could raise concern in light of the findings on single-
particle Green’s-function-based approaches [41,42]. We
note that the single-particle gap is a prerequisite for the
VMC wave function to represent a topological phase since
only then partons may be integrated out; hence, the shift of
κc > 0.5 is expected. Nevertheless, the result is the first
report of the TQPT providing the target and calls for further
study on the critical point using independent measures such
as the many-body gap or the more established yet costly
entanglement-entropy-based approaches [28,29,40,43,44].
Finally, we demonstrate that we can train the network to

learn the topological protection of the topological phases
and show indifference to the microscopic details, such as
lattice structure or impurities. The key to successful
machine learning, this celebrated feature is the diversity
of the training inputs. Without diverse inputs, the network
looks for features that are specific to its training set. For
instance, the network trained only with square lattice
cannot recognize the topological phase in the honeycomb
lattice. But, if we provide diverse input taken from both
the square lattice and the honeycomb lattice systems, the

network can be trained to recognize topological phases
on both lattices with little penalty on accuracy (see Fig. 5).
We also note that the network recognizes the difference
between different Chern numbers (e.g., C ¼ −1 vs C ¼ 1)
as well as higher Chern numbers (e.g., C ¼ 2).
Conclusion.—In summary, we have successfully imple-

mented supervised machine learning for topological
phases by introducing QLT as an interface between the
traditional concept of response theory and a simple neural
network.
Three major strengths of our QLT-based machine learn-

ing approaches are 1) efficiency, 2) accuracy, and 3)
versatility. Firstly, the network can be trained with quasi-
two-dimensional QLT in gapped phases. Furthermore,
since QLT bypasses the time-consuming process of
averaging over Markov chains, one can quickly scan the
phase space once the network is trained. Although our
focus was on the phases, we demonstrated that nonanaly-
ticity in the ratio of nontrivial responses allows us to
pinpoint the phase transition. Finally, as a real-space-based
formalism that does not require translational symmetry or
diagonalization or flux insertion, QLT is quite versatile.
Our approach can also be applied to systems with other

fillings as well as higher dimensions. The fact that QLT
readily handles degenerate ground states adds to its
versatility. Moreover, there is nothing restricting QLT to
VMC data. It can be applied to Hamiltonian-based quantum
Monte Carlo samples [41,42] as well as other representa-
tions of many-body wave functions, such as matrix product
states and Projected entangled pair states (PEPS). Most
importantly, the procedure of defining appropriate QLT
guided by relevant response function we established here is
readily expanded to other states of interest such as the

FIG. 4. Application to a ν ¼ 1=3 FCI. The topological phase
transition in the parent Chern insulator at κ ¼ 0.5 is marked by a
vertical red dashed line. The inset shows the results using a neural
network trained with the parent free fermion model, where p is
calculated over 20 000 samples for each κ to reduce statistical
error. The main panel shows the results using FCI wave functions
for both training (κ ¼ 0.1 for trivial and κ ¼ 1.0 for the FCI, first
ground state only) and testing (all three degenerate ground states,
see Supplemental Material [37]). L ¼ 16 data are shown in
addition to L ¼ 12 to help attribute the differences between κc of
the topological phase transitions to the finite-size effect. dc ¼ 2
for all.

FIG. 5. The ratio p of a “topologically nontrivial” response
from the neural networks for the honeycomb lattice model
(Supplemental Material [37]) over the parameter region
κ ∈ ½0.1; 1; 0�. The topological phase transition is at κ ¼ 0.5
(vertical red dashed line). The neural networks are trained using
the Chern insulators and trivial insulators only on the honeycomb
lattice, only on the square lattice, and on both. The inset zooms
into the critical region 0.4 ≤ κ ≤ 0.6. dc ¼ 2 for all.
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superconducting state, quantum spin Hall insulator, and Z2

topological order [38]. Hence, our construction opens the
door to applications of the machine learning to novel states
of broad interest.
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