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Quantum physics in one spatial dimension is remarkably rich, yet even with strong interactions and
disorder, surprisingly tractable. This is due to the fact that the low-energy physics of nearly all one-
dimensional systems can be cast in terms of the Luttinger liquid, a key concept that parallels that of the
Fermi liquid in higher dimensions. Although there have been many theoretical proposals to use linear
chains and ladders of Josephson junctions to create novel quantum phases and devices, only modest
progress has been made experimentally. One major roadblock has been understanding the role of disorder
in such systems. We present experimental results that establish the insulating state of linear chains of
submicron Josephson junctions as Luttinger liquids pinned by random offset charges, providing a one-
dimensional implementation of the Bose glass, strongly validating the quantum many-body theory of one-
dimensional disordered systems. The ubiquity of such an electronic glass in Josephson-junction chains has
important implications for their proposed use as a fundamental current standard, which is based on
synchronization of coherent tunneling of flux quanta (quantum phase slips).
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The combined effects of interaction and disorder in
superfluid bosonic condensates can have drastic conse-
quences, leading to the Mott insulator [1,2] and Bose-
Anderson glass [3–5]. The latter is thought to describe
helium-4 in porous media, cold atoms in disordered optical
potentials, disordered magnetic insulators, and thin super-
conducting films. The prototypical Bose-Hubbard model
without disorder predicts a Beresinskii-Kosterlitz-Thouless
quantum phase transition between superfluid and Mott
insulator. Experimental implementation using arrays of
Josephson junctions (JJ) has been explored [6–8];
however, the possibility of the insulating glass has not
been considered.
One-dimensional arrays of Josephson junctions are

notable for application as a fundamental current standard
[9,10], which is based on synchronization of a “dual”
Josephson effect, envisioned to arise from coherent quan-
tum tunneling of flux quanta, or so-called quantum phase
slips [11–15]. Unlike the Mott insulator, the insulating
glass is compressible; therefore, ac synchronization of
charge may not be possible. Although the presence of
offset charge disorder is well established for small super-
conducting islands, it has not been sufficiently addressed in
regards to dual Josephson effects.
We have measured critical voltages for a large number of

simple chains of submicron Josephson junctions with
significantly varying energy scales. We observe universal
scaling of critical voltage with single-junction Bloch
bandwidth. Our measurements reveal a localization length
exponent that steepens with Luttinger parameter, K, arising

from precursor fluctuations as one approaches the Bose
glass-superfluid quantum phase transition. This contrasts
with the fixed exponent found for classical pinning of
charge density waves [16], vortex lattices [17], and dis-
ordered spin systems [18], and is in excellent agreement
with the quantum theory of one-dimensional disordered
bosonic insulators [4,5,19]. Luttinger liquids (LLs) char-
acteristically obey scaling laws with K-dependent expo-
nents; thereby we demonstrate a unique signature of pinned
Luttinger liquids using insulating JJ chains.
A Josephson-junction array is described by a coupled

quantum rotor model, which is equivalent to a long-ranged
Bose-Hubbard model with large average number of bosons
hni, per site. The Josephson energy EJ is related to the
hopping matrix element t of the Bose-Hubbard model as
hnit → EJ. The on-site energy U of the Bose-Hubbard
model is related to the single-junction Cooper-pair charging
energy, ECP ≡ ð2eÞ2=2CJ, where CJ is the junction capaci-
tance. In Josephson-junction arrays, a third energy scale,
E0 ¼ ð2eÞ2=2C0, arises from the inevitable capacitive
coupling to ground, C0. For a one-dimensional chain with
only nearest-neighbor junction capacitances CJ, and capac-
itances to ground, the Coulomb interaction Uij decays
exponentially as Uij ≃ ΛECP expð−ji − jj=ΛÞ, where the

screening lengthΛ is given byΛ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
CJ=C0

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0=ECP

p
.

In the insulating state of a one-dimensional chain of
junctions, it is more convenient to cast the model in terms
of continuous quasicharges fqig, where qi ≡ πQi=2e is
proportional to the charge Qi that has flown into junction i,
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rather than discrete island charges fnig [20]. In this way, an
effective Langrangian is obtained [22,23],

L ¼ 1

2πK

X
i

�
_q2i
v
− vðqi − qiþ1Þ2

�
−
X
i

ϵ0ðqi þ fiÞ;

ð1Þ

where charge velocity v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0EJ=

p
ℏ, Luttinger param-

eter K ≡ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EJ=2E0

p
, and the fi describe random offset

charges. The energy E0 is seen to be the elastic energy for
small displacements of quasicharge.
Likharev and Zorin [21] found that the energy levels for a

single current-biased junction are given by periodic Bloch
energy bands in quasicharge. The lowest energy band ϵ0
is characterized by its Bloch bandwidth W. For large
g ¼ EJ=ECP, the energy bands become sinusoidal and
ϵ0 ¼ −ðW=2Þ cosð2qÞ, with

W ¼ 16

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EJECP

π

r
ð2gÞ1=4e−

ffiffiffiffiffi
32g

p
; ð2Þ

so that in this limit, the continuum version of Eq. (1)
describes a sine-Gordon model [24].
In this Letter we exploit the critical voltage as a probe of

localization (pinning) length NL, which can be determined
using a generalized depinning theory. The classical limit of
depinning, as applied to JJ chains, has been discussed
recently by Vogt et al. [22]. Under the assumption of
maximal offset charge disorder, with the fi distributed
independently for each site, the last term in Eq. (1) becomes
random, bounded by �W=2. The quasicharge is then
pinned in a manner analogous to pinning of an elastic
charge density wave by random impurities [16].
Classical pinning of an elastic object by a random

potential arises in many contexts, and is related to the
study of interface roughness [25]. As found in the context
of disorderd spin systems [18], and pinning of vortex
lattices in type-II superconductors [17], one finds a char-
acteristic length NL over which the ground state remains
ordered. NL is set by competition between distortion of the
elastic object, which lowers the total pinning energy, but
simultaneously increases the elastic energy. It is found self-
consistently that NL has a characteristic power law
dependence on the range of the pinning distribution, here,
NL ∝ W−2=3. The depinning force is proportional to the
elastic energy, E0, and inversely proportional to N2

L. For
chains larger than NL, the pinning force is simply the
critical voltage divided by the number of junctions in the
chain, and therefore, eVc=N ∝ E−1=3

0 W4=3.
One notes from Eq. (2) that the leading order prefactor of

W is a constant times the junction plasma frequency,
ℏωp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EJECP
p

. In order to compare chain families of
widely varying ℏωp, and chain length N, we express the
critical voltage and Bloch bandwidth as dimensionless
variables, v≡ eVc=Nℏωp and w≡W=ℏωp, so that in
the classical limit,

v ¼ aw4=3; ð3Þ

with the prefactor, a ¼ bðK=ΛÞ1=3, with b being a con-
stant Oð1Þ.
Recently, voltage-biased Josephson junction arrays have

been described using a dual Josephson picture, where the
critical voltage arises from coherent quantum phase slips
(QPS) [10,11,14,15]. The phase slip rate across each
junction in the large g limit is W=2h, and under the
assumption of independent phase slips across each junc-
tion, the critical voltage of a chain would be Vc ¼
Nmax jdϵ0ðqÞ=dqjðπ=2eÞ, which for large g becomes
πNW=2e, leading to v ¼ πw=2, that is, an exponent of 1
rather than 4

3
. The simple QPS picture is thus seen to assume

rigid quasicharge across the chain, and ignores offset charge
disorder. The assumption of rigid quasicharge is arguably
reasonable in the case of an infinite screening length Λ, or
deep in the incompressible Mott insulating state, but ques-
tionable in the compressible Bose glass state.
So far we have only considered the case of classical

depinning. When quantum fluctuations are included
[4,5,19], one finds that the localization length increases with
increasingLuttinger constant,K, such thatNL ∝ w−2=ð3−2KÞ,
which diverges at the Bose glass-superfluid (BG-SF) tran-
sition, Kc ¼ 3=2. The critical voltage then scales as

v ¼ awα; α ¼ 4=ð3 − 2KÞ: ð4Þ
The dominant effect of quantum fluctuations of charge,
K ≠ 0, is seen to change the exponent α, as the prefactor a is
only very weakly dependent on K.
We have experimentally determined the dependence of

the critical voltage on chain length N, scaled Bloch
bandwidth w (varying both plasma frequency ωp and g),
and screening length Λ, by fabricating and measuring a
large ensemble of Al=AlOx=Al single-junction chains.
Several families of devices with different plasma
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FIG. 1. Scanning electron micrograph showing two array
families with high (left panel) and low (right panel) plasma
frequencies, and nominal junction areas of 100 × 100 and
300 × 400 nm, respectively. The specific capacitance is 95 and
54 fF=μm2, respectively. The precise junction area within a
family is modulated by the exposure dose.
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frequencies, controlled by the oxide barrier thickness, were
initially fabricated on substrates without ground planes (see
Fig. 1). Within a device family, we vary the junction area A
across the family, in order to geometrically tune g [see
Supplemental Material (SM) [26]].
Our approach is in contrast with previous studies, which

have mostly been carried out using SQUID arrays, for
which each serial element of the chain consists of two
junctions in parallel forming a low inductance loop. The
advantage of using such SQUID arrays is that using a single
device, the effective EJ for an element can be tuned in situ
by applying an external magnetic field. However, this
simultaneously changes both g and ωp. Instead we were
motivated to examine junction chains that were as simple as
possible to fabricate uniformly, not susceptible to disorder
arising from unequal SQUID junctions or variations in loop
areas, and unaffected by low-frequency flux noise.
Furthermore, we desired to keep the plasma frequency
as constant as possible for a given family of devices.
For each device, we first obtain an accurate measure

of the average junction charging energy, ECP, from the
voltage offset, Voff , of each device found from extra-
polating its linear current-voltage characteristic (IVC) from
large voltage bias. As noted in [26–28], the experimentally
determined charging energy is found as ECP ¼ 4eVoff=N,
and the average Josephson energy EJ across the chain is
found from the normal state conductance using the
Abegaokar-Baratoff relation. Note that a given device
can be parametrized by either EJ and ECP, or alternatively
ℏωp and g.
Next we measure the critical voltage Vc, deep in the

subgap region, V ≪ 2NΔ=e, where Δ is the superconduct-
ing gap. Many of the measured devices have nonhysteretic
IVCs in this region. For these devices, the critical voltages
are determined to be the voltage at which the current
becomes measurably greater than the noise level in the
zero-current region. Typically this current is 3 orders of
magnitude or more greater than the zero-current noise level.
Some devices with larger g exhibit hysteretic IVCs. For
these, the critical voltage is found as the average of the
distribution of switching voltages. The switching voltage is
defined as the voltage for which the current makes a large
jump (maximum dI=dV) upon stepping up from zero
voltage bias, as illustrated in Fig. 2. The standard deviations
of the switching voltages are at most a few percent of the
distribution average critical voltage (see SM [26] for addi-
tional details).
In order to explicitly test the influence of K on the

scaling of critical voltage, we also fabricated and measured
a family of devices having a gold ground plane buried
under 50 nm of atomic layer deposited Al2O3. The presence
of the ground plane increases the capacitance to ground C0,
hence lowering Λ, and therefore increasing K for a given
range of w, since K ¼ πΛ−1

ffiffiffiffiffiffiffiffi
g=2

p
. Increased K produces a

stronger departure from the classical scaling through

Eq. (4), as one moves closer to the SF-BG quantum phase
transition at Kc ¼ 3=2.
In Fig. 3, we plot the dimensionless scaled critical

voltage, v, as a function of the scaled, single-junction
Bloch bandwidth, w ¼ W=ℏωp. W has been calculated by
numerical diagonalization of the Hamiltonian for a single,
current-biased junction, using the experimentally deter-
mined values of EJ and ECP for each device. The blue and
black dotted lines are the classical expression of the
depinning theory, Eq. (3) [22], for differing Λ, which
are already substantially reduced from the red solid line that
arises from a model based on independent, coherent QPS
(rigid quasicharge, i.e., infinite screening length).
For Fig. 3, we performed a least-squares fit to screening

length Λ and prefactor b, using the disordered LL theory,
resulting in the solid blue and black lines for devices
without and with ground planes, respectively. Note thatK is
determined from independent measurement of EJ and ECP,
combined with fit values of the screening length Λ (or
alternatively E0). The fitted values of screening length are
Λ ¼ 13.1 for devices without ground planes, and Λ ¼ 4.0
for the devices with ground plane. The fitted prefactor for
devices without ground planes is 11% larger than the
classical value found by Fukuyama and Lee in the context
of charge density waves [16]; however, for ground plane
devices it is 28% smaller. Corrections to the theory arising
from slightly nonmaximal charge disorder or other micro-
scopic assumptions, would result in a modified prefactor.
For comparison, we have also included in Fig. 3 the

disordered LL theory using the Fukuyama-Lee prefactors

FIG. 2. (Main plot) Experimental determination of the critical
voltage for a N ¼ 250, family 1, device CS3 (see SM [26]). The
blue data are obtained upon stepping up from zero voltage, and the
red when stepping back down from nonzero current. (Lower inset)
Closeup of the small voltage region where the critical voltage is
extracted. A very small hysteresis region is present in the IVC for
this device. The critical voltage is taken to be the average value of
the switching voltage, where the latter is defined as the voltage
having maximum dI=dV upon stepping up from zero voltage.
(Upper inset) Linear dependence of Vc on chain length, N, for a
family of devices where only length has been varied.
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(dashed blue and black lines), combined with values of Λ
determined from the observed periodicity in gate voltage,
ΔU, of the conductance (see SM [26]). Here one assumes
the observed period in the normal state is given by
ΔUC0 ¼ e; however, additional theory is necessary to
understand the experimentally observed periodicities in
the transport regime. This approach, which involves no
fitting parameters, nevertheless is a very good match to the
data, in contrast to the classical result.
For small w, K ∝ Λ−1 lnw, explicitly showing that over

the same range of w, K is enhanced by the decreased
screening length of devices with ground planes, resulting in
a stronger departure from the classical result.
We conclude that the data are clearly inconsistent with

the classical depinning theory (slope 4=3), but can be
accurately described by the quantum theory, which includes
steepening of the localization length exponent with
Luttinger parameter K. Note that according to theory,
reducing the screening length pushes the classical theory
(K ¼ 0) to higher scaled critical voltages (dotted black line
compared to dotted blue), in opposition to the quantum

result, which is in excellent agreement with our experi-
ments where we have systematically increased K by
reducing the screening length using ground planes.
The universal scaling of the data is furthermore notable

as it covers 3 orders of magnitude in v, 2 in w, nearly 2 in
length (N ¼ 100–5000), and greater than 1 in plasma
frequency. We therefore identify and demonstrate quanti-
tatively a unique signature of the Bose glass in Josephson-
junction chains, as a precursor to Bose-glass-to-superfluid
transition at Kc ¼ 3=2, and confirm the quantum theory of
disordered one-dimensional bosonic insulators based on an
interacting Luttinger-liquid picture.
Based on a finite size analysis of the zero-bias resistance

of SQUID chains, the authors of Ref. [8] concluded that the
one-dimensional superfluid-insulator transition occurs at an
anomalously low value for the Luttinger parameter [31,32].
In view of our single-junction chain results, which are in
remarkable quantitative agreement with theory of the
superfluid-Bose glass transition, there appears to be a
discrepancy. We have recently measured SQUID chains
that indeed show significantly reduced critical voltages
compared to our single-junction chains [33]. Additional
experimental work is needed to resolve the matter, which
could indicate a nontrivial interplay of flux and charge in
SQUID chains.
In the BH model, a sequence of Mott lobes occurs with

variation of the chemical potential μ. With disorder in μ, a
Bose glass phase intervenes between Mott insulator and
superfluid phases [3]. For sufficiently strong disorder, the
Mott lobes disappear, leaving only the Bose glass. For our
devices, the chemical potential is related to gate voltage U.
We have found no appreciable gate dependence of Vc in
any device. This can be understood as a consequence of
maximal offset charge disorder, and indicative of the
possible ubiquity of the Bose glass phase in insulating
Josephson-junction arrays.
Given that materials used for quantum phase slip

devices are significantly disordered, we believe it likely
that the Bose glass behavior we have found in JJ chains
may well extend to such superconducting nanowires. In
contrast to the rigid Mott insulator, the Bose glass has
nonzero compressibility due to low-energy rearrange-
ments of domain boundaries. In JJ chains, these are
Cooper pairs (or Cooper-pair holes), localized over the
pinning length, NL. Their number and configuration are
randomly changed by external voltages. We argue that
this could explain the lack of success in achieving sharp
current steps under rf or microwave driving, for both
junction chains [34] and superconducting nanowires
[35,36].
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FIG. 3. Scaled critical voltage v ¼ eVc=Nℏωp, versus scaled
Bloch bandwidth w ¼ W=ℏωp. Symbols represent different fab-
rication “families” distinguished by plasma frequency ωp, length,
and presence of ground plane (see SM [26]). The solid red line is
theory for independent QPS across each junction (additive
Coulomb blockade, or “rigid” quasicharge, and no disorder)
and has slope ¼ 1. Solid lines are the quantum theory of a
disordered Luttinger mode, Eq. (4), with fitted values of screening
length Λ ¼ 13.1 (blue), and Λ ¼ 4.0 (black), respectively. These
exhibit a w-dependent slope, 4=ð3 − 2KÞ, where KðwÞ is the
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