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Data from turbulent numerical simulations of the global ocean demonstrate that the dissipation of kinetic
energy obeys a nearly log-normal distribution even at large horizontal scales Oð10 kmÞ. As the horizontal
scales of resolved turbulence are larger than the ocean is deep, the Kolmogorov-Yaglom theory for
intermittency in 3D homogeneous, isotropic turbulence cannot apply; instead, the down-scale potential
enstrophy cascade of quasigeostrophic turbulence should. Yet, energy dissipation obeys approximate log-
normality—robustly across depths, seasons, regions, and subgrid schemes. The distribution parameters,
skewness and kurtosis, show small systematic departures from log-normality with depth and subgrid
friction schemes. Log-normality suggests that a few high-dissipation locations dominate the integrated
energy and enstrophy budgets, which should be taken into account when making inferences from
simplified models and inferring global energy budgets from sparse observations.
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The mechanical energy budget of the oceans must close
independently because of the minimal compressibility of
seawater [1]. The global oceans accumulate potential and
kinetic energy (KE) mostly from thewinds and tides at large
horizontal scales, which flow to concentrate in boundary
currents and turbulent flows. KE is ultimately dissipated
near the Kolmogorov microscale, λK ≈Oð1 mmÞ. The
present highest-resolution global ocean models (GOMs)
can now resolve some turbulence in the ocean [here nominal
0.1° ¼ Oð10 kmÞ horizontal and Oð10–100 mÞ vertical
resolution], but the direct representation of the λK-scale
KE sinks remains centuries away, and instead present
models use bulk formulas or “subgrid schemes,” which
dissipate KE in the boundary layers and ocean interior and
represent the transfer of KE to unresolved scales [2]. This
Letter explores the statistics of dissipation in GOMs which
resolve the ubiquitous quasigeostrophic (QG) turbulence of
the ocean but do not resolve λK . Because of the limited
resolution of GOMs, these statistics provide information
about the intermittency of QG turbulence rather than the λK-
scale dissipation that, in the real world, could occur in a
different manner and location (e.g., [3,4]).
QG turbulence [5] is an asymptotic theory for strongly

nonlinear flow in stratified, rotating fluids (such as the
ocean) in the “mesoscale” near the 5–300 km Rossby
deformation scale lR, where turbulence is constrained to
nearly horizontal motions [6]. Oceanic baroclinic and

barotropic instabilities set the energy injection scale near
the Rossby radius (linj ≈ lR), and the model presented here
resolves this scale as its horizontal resolution Δh ≪ lR at
most latitudes [7]. QG turbulence resembles two-dimen-
sional (2D) turbulence but includes density stratification,
weak vertical motion, and planetary rotation. QG, like 2D,
turbulence develops two cascades of conserved invariants:
an inverse (up-scale) transfer of KE toward larger length
scales for l > linj and a forward (down-scale) flux of
enstrophy (squared vorticity)—specifically, quasigeo-
strophic potential enstrophy (QGPE)—for l < linj [8,9].
Up-scale KE and down-scale QGPE cascades distinguish
QG turbulence from3D isotropic turbulence,which has only
a down-scale KE cascade [10,11]. Despite QG predictions,
numerical simulations of the ocean often show a down-scale
KE cascade [12–14] to the “submesoscales” (non-QG
turbulence much smaller than lR), and submesoscales have
been observed to receive KE from larger scales [15].
However, these studies used limited observations in one
region or highly idealized model setups. Here the inter-
mittency of the KE cascade of turbulence is analyzed in
global, realistic numerical simulations of the hydrostatic
Boussinesq equations. The present GOM is typically con-
sistent with, but more general than, the QG theory; however,
it produces a KE cascade to unresolved scales, and its cost
requires sacrificing the resolution of most submesoscale
motions [16]. We shall discuss the link between the KE
cascade seen in simulations and the inertial QGPE cascade
of the QG theory, as well as their respective intermittency
statistics.
GOMs use subgrid schemes that mimic horizontal

friction to dissipate KE and enstrophy, which estimates
the forward KE transfer by QG turbulence to unresolved
scales. Not all numerical and subgrid schemes precisely
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relate the rate of production, rate of cascade, and rate of
dissipation to one another. In the present study, we restrict
our analyses to dissipation statistics, and we use a variety of
subgrid schemes to ensure robust conclusions. While it is
difficult in practice to vary resolution in a realistic GOM,
our previous study [17] examines resolution convergence in
an idealized setting with the same schemes and predicts that
the mesoscale turbulence here would be unaffected by
quadrupling the resolution over most of the Earth [7],
consistent with the agreement between GOMs at this
resolution and observations [18]. Dissipation is one of
the largest sinks of KE in GOMs, rivaling topographic drag
and boundary layer turbulence [19]. It is therefore impor-
tant to quantify the spatial intermittency of dissipation so
that the energy transfer to, and effects of, unresolved
turbulence can be approximated in a way that is physically
consistent with this intermittency.
The energy cascade in 3D turbulence is well known to be

intermittent [20–22]. The energy and enstrophy cascades in
2D turbulence are likewise intermittent [23–26] with some
explored mechanisms [27,28]. In this Letter, we investigate
the intermittency of dissipation in global ocean models
which resolve QG turbulence.
Equations.—The evolution of the horizontal velocity

u ¼ ðu; v; 0Þ in GOMs is a function of pressure p,
planetary vertical vorticity f, and vertical FV and horizontal
FH friction given by

Du
Dt

¼ −∇pþ f × uþ FV þ FH; ð1Þ

where D=Dt is the material derivative and ∇ ¼ ð∂x; ∂y; 0Þ.
The hydrostatic relationship and incompressibility provide
vertical velocity:

∂p
∂z ¼ −ρg; ∇ · uþ ∂w

∂z ¼ 0: ð2Þ

This Letter focuses on FH, which represents the mixing
effects of unresolved mesoscale (QG) turbulence. A
common parameterization for FH is a horizontal, harmonic
“eddy” viscosity acting on the resolved velocity. FV is
dominated by the effects of other processes, such as internal
waves or boundary layer turbulence, and will not be
considered further. Contracting (1) with u, the effect of
FH on KE is

u · FH ¼ u · ð∇ · ½ν∇u�Þ ¼ ∇ · T − ν
∂ui
∂xj

∂ui
∂xj ; ð3Þ

where ν is a dynamic viscosity depending on the flow and
resolution parameters and repeated indices imply a sum-
mation over horizontal directions. T transports and diffuses
KE, but ∇ · T integrates to zero over the global ocean. The
last subtracted term is the dissipation ε. Dissipation is
positive definite if ν > 0. Dissipation estimates for non-
harmonic friction are found similarly [19]. Hydrostasy and

the grid aspect ratio [δ ¼ Oð0.05 − 0.005Þ] imply that the
vertical KE is negligible: ww=ðu · uÞ ¼ Oðδ2Þ.
This study uses the high-resolution Parallel Ocean

Program (POP) numerical model, described in
Refs. [18,19,29], which has Δh ≪ linj everywhere except
high latitudes and boundaries [7]. For most simulations
shown here, ν is parameterized by the “2DLeith” large-eddy
simulation technique [17,30], which avoids overdamping of
the resolved flow [19]. However, qualitatively similar results
occur with other parameterizations (see below).Most results
shown use snapshots of the flow field on January 1 after a
multiyear spin-up using realistic atmospheric forcing.
Results.—The global histogram for the logarithm of

dissipation is shown in Fig. 1 at several depths. The most
likely dissipation value decreases with the depth, consistent
with the greatest velocities being near the surface. The
PDFs of log10ðεÞ are approximated well by a normal
distribution, with the best-fit Gaussian curves shown.
Deviations from log-normality are small but depth depen-
dent. For example, skewness is slightly negative near the
surface and slightly positive at a depth.
A theory predicting the log-normality of dissipation of

QGPE, enstrophy, and KE is briefly sketched here and
connects the distribution of the QGPE flux η from large to
small scales, following arguments similar to Ref. [20] for
the 3D turbulent cascade of KE, with flux ϵ. The direct
evaluation of η over a volume, eddy, or structure is possible,
in principle [8,17], but, as with the diagnosis of ϵ, the
statistics of the dissipation rate of QGPE are more
straightforward given the geographic and numerical com-
plexities in this model. Suppose the eddy with the largest
volume, at the top of a QGPE cascade, fluxes at a rate η0, so
that QGPE is transferred into smaller “child” eddies
volumetrically dividing the original. There are more child

FIG. 1. Probability distribution functions (PDFs) for the log-
arithm of dissipation (symbols), and for the best-fit Gaussian
function for each set of dissipation values (curves). The dis-
sipation PDFs are shown for the surface (black), 500 m depth
(red), and 3000 m depth (blue).

PHYSICAL REVIEW LETTERS 120, 094501 (2018)

094501-2



eddies, each of which takes on a (non-negative) fraction β
of the QGPE flux arriving from the largest eddy η0. For
example, if the child eddies are 1=8 as large as the original
eddy, then on average each fills one of eight smaller
volumes and fluxes β̄1η0 ¼ 1=8η0. If each child eddy is
composed of eight smaller grandchildren, they each flux on
average 1=8 of whatever fraction of η0 their parents flux, or
β̄2 β̄1 η0 ¼ 1=8 × 1=8η0. The geometric details and scale of
each refinement and whether there are eight or another
number of children are unimportant. The important factors
for log-normality across averages of η over equal volumes
are that this number is constant over all cascade steps, that
the child volumes do not intersect, and that the union of all
child volumes equals the parent volume at each step.
Relaxing these assumptions may result in multifractals
rather than log-normality [31]. Any particular eddy will
deviate from the average β̄i, so let βi represent its
proportion i out of n steps down the cascade from the
largest eddy. As the transfer continues, n grows, so if the
QGPE cascade is sufficiently deep and statistically sta-
tionary, then the large-n statistics of βi will also govern the
QGPE dissipation. The QGPE flux through any particular
eddy (ηn) can be found from the product of the proportions
of fluxes at each larger scale up to the largest eddy; thus,

ηn ¼ η0
Yn

i¼1

βi; logðηn=η0Þ ¼
Xn

i¼1

logðβiÞ: ð4Þ

From this construction and the assumed self-similarity, we
assume the log βi are independent and identically distrib-
uted with a finite mean and variance; thus, the summation
in Eq. (4) is normally distributed for large n. The logarithm
of the dissipation of QGPE should balance the fluxes and is
thus normally distributed (histogram not shown, but skew-
ness and kurtosis shown in Fig. 3).
Figure 1 shows that the dissipation of KE is log-normally

distributed like the QGPE dissipation in Eq. (4). Figure 2
shows that averages over a variety of scales each share the
log-normal character, consistent with the preceding argu-
ments. The dissipation of 2D enstrophy (≈ νj∇q2Dj2) and
QGPE (≈ νj∇qQGj2) are also approximately log-normal in
the simulations, where q2D and qQG are the vertical
vorticity and QG potential vorticity, respectively, with
gradients

∇q2D ¼ ∇ðẑ · ∇ × uÞ; ð5Þ

∇qQG ¼ ∇q2D þ ∂
∂z

f
N2

∇b: ð6Þ

Figure 3 shows the QGPE dissipation statistics (gray lines),
which are more log-normal than the KE dissipation
statistics (black lines), for one of the simulations. The
2D enstrophy dissipation statistics (not shown) are similar
to the QGPE dissipation statistics. Again gradients act over
horizontal directions only, f is the Coriolis parameter, N is

the buoyancy frequency, and b is the buoyancy. Bachman,
Fox-Kemper, and Pearson [17] detail the derivation of these
dissipation operators.
The argument above explains why the dissipation of

QGPE is nearly log-normal but not why those of KE and
enstrophy are. At a scale L much smaller than linj, the
QGPE is increasingly dominated by the 2D enstrophy, as
the ratio of the contribution to qQG of the second term
(vortex stretching) to the first term (vertical vorticity, q2D)
in (6) decreases as L2=l2inj [17]. Thus, if L ≪ linj, then
qQG ≈ q2D, and 2D enstrophy dissipation will be log-
normal. Finally, in rotating, stratified turbulence, the
Helmholtz decomposition of horizontal velocity is
expected to be dominated by the rotational rather than
the divergent velocity [32]. Thus, wherever 2D enstrophy is
dissipated, then KE dissipation must cooccur with a similar
statistical distribution. QGPE flux is conserved over all
scales smaller than linj, so the QGPE flux and dissipation
should be approximately equal. However, neither 2D ens-
trophy nor KE fluxes are guaranteed to be conserved across
the scales of the QGPE cascade. Indeed, the QG theory
predicts that KE dissipation should become increasingly
small on scales smaller than linj. Bottom drag, vortex tilting,
vertical viscosity, internal waves, and inverse cascades set
quite different dynamics over these scales than a forward
cascade for 2D enstrophy and KE. Observations in the
North Atlantic show that, on submesoscales, waves begin
to dominate the KE spectrum, changing the Helmholtz
decomposition away from its turbulent scaling [33]. Only a

FIG. 2. (Top) Map of surface dissipation. (Bottom left) Surface
dissipation map for a 30° × 30° region denoted by a black box.
(Bottom right) PDFs of log10ðεÞ, as in Fig. 1, for the global ocean
(blue), the 30° × 30° region (black), and the 10° × 10° region
(red). Also shown are the range of the mean and amplitude of
Gaussian fits for the nine 10° × 10° child regions within the black
box [illustrating logðηnÞ distributions from (4)].
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restrictive conclusion is intended here: Log-normal dis-
sipation of QGPE by horizontal friction implies log-normal
dissipation of 2D enstrophy and log-normal dissipation of
KE by horizontal friction when the grid is finer than linj and
KE and q2D are dominated by the turbulent, rotational
velocity. Nonetheless, Figs. 1–3 show that models of the
mesoscale and large submesoscales obey this limit.
Figure 2 shows global and regional maps of surface

dissipation. High spatial variability is consistent with the
log-normal distribution, but regions of dissipation are also
related to oceanic features: The largest dissipation occurs in
western boundary currents and the Antarctic Circumpolar
Current. The PDFs of log10ðεÞ for the global ocean and two
smaller regions denoted by the black and red boxes on the
global map are inset in Fig. 2. The dissipation is log-normal
in each region (and all others examined), but the mean and
variance depend upon the size and location of the chosen
region. Interestingly, the amplitude and mean do not vary
monotonically with the region size.
Deviations from log-normality are assessed through

moments of the log10ðεÞ distribution (Fig. 3, blue curve).
The skewness and kurtosis are close to their Gaussian
values (0 and 3, respectively) at all depths [34]. The small
deviations of skewness and kurtosis above their Gaussian
values indicates that the dissipation distributions have
slightly wider tails and a tendency towards larger values
than a Gaussian distribution. Both statistics vary system-
atically with the depth, with the skewness switching sign in
the surface 500 m (Fig. 1). QGPE dissipation is even closer
to being log-normally distributed than the KE dissipation
(gray versus black lines), consistent with the expectation
that QGPE cascades dominate in this simulation. Enstrophy

dissipation statistics (not shown) are similar to those of
QGPE dissipation.
To demonstrate the robustness of log-normal dissipation,

another season and two other simulations are shown in
Fig. 3. The simulations differ only in their parameterization
of FH. The harmonic dissipation using QG Leith viscosity
(black curve) [17] and 2D Leith viscosity (blue curve) [30]
as well as a biharmonic dissipation with resolution-depen-
dent viscosity (red curve) [18] all show nearly log-normal
distributions. A more general discussion of these simula-
tions is in Ref. [19]. Log-normality is also robust across
seasons (compare the black profiles).
Previous work has shown that dissipation statistics in 3D

turbulence cannot be precisely log-normal [22,35]. More
accurate multifractal models for 3D turbulence are able to
provide better consistency and predict higher moments
[21,31,36]. Log-normality is a good approximation for
dissipation statistics in a global ocean model, but there are
systematic variations from log-normality which may
improve through multifractal models or greater precision
connecting the dissipation statistics and dynamics [37].
Conclusions and significance.—The dissipation of

kinetic energy by horizontal friction follows a log-normal
distribution in high-resolution global ocean models. This
distribution is accurate for both global and regional
statistics and for a range of common horizontal friction
parameterizations. The mean and variance of the distribu-
tion vary with the depth, size, season, and location of the
chosen region. On a global scale, departures from log-
normality are small and depend systematically on the
depth. A more detailed description of dissipation inter-
mittency, such as multifractal models, would have to
account for these variations of ocean turbulence properties.
The present results have implications for a range of

physicists and oceanographers. For example, the down-
scale cascade of energy through the ocean submesoscale
has been inferred through localized in situ observations
[15] and regional numerical models [38–40], but we have
shown that most of the dissipation at the mesoscale occurs
in a small number of high-dissipation locations due to the
log-normal distribution (90% of dissipation at a given depth
occurs in about 10% of the world ocean). This distribution
presents challenges when extrapolating regional turbulence
observations to global or basin-wide statistics, where it is
common to assume normal statistics (e.g., [41]).
The statistics of dissipation importantly constrain sub-

grid schemes in ocean models. In particular, many models
use stochastic noise to approximate chaotic subgrid proc-
esses. If these stochastic schemes aim to capture the log-
normal statistics of KE and QGPE dissipation, our results
suggest that the noise applied should be dominantly
multiplicative [42–44] (where log-normal distributions
are common) rather than additive [45,46] (where normal
distributions are common), unless the additive noise has
specific properties [47]. If the numerics are such that there
are more modes capable of being dissipated than capable of

FIG. 3. Skewness (left) and kurtosis (right) of the global
log10ðεÞ PDF as a function of the depth for several simulations.
For the QG harmonic simulation, the log10ðεÞ statistics for both
January and July are shown, as well as the statistics of the QGPE
dissipation [log10ðηÞ; gray crosses]. The statistics are consistently
near the Gaussian values.
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causing fluxes (in Ref. [48], this ratio is nearly 3=2), then
the combination of dissipation and stochastic variability has
some limited freedom. The present results suggest that an
important ex post facto check of subgrid schemes is the log-
normality of dissipation and flux statistics.
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