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11Dipartimento di Fisica, Università degli Studi di Milano e INFN Milano, Milan I-20133, Italy
12Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia

13Institute for Theoretical and Experimental Physics, NRC “Kurchatov Institute”, Moscow I-117259, Russia
14National Research Centre “Kurchatov Institute”, Moscow 123182, Russia

15Max-Planck-Institut für Physik, Munich D-80805, Germany
16Physik Department and Excellence Cluster Universe, Technische Universität München, München D-85748, Germany

17Dipartimento di Fisica e Astronomia dell‘Università di Padova, Padua I-35121, Italy
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The GERDA experiment searches for the lepton-number-violating neutrinoless double-β decay of
76Ge (76Ge → 76Seþ 2e−) operating bare Ge diodes with an enriched 76Ge fraction in liquid argon. The
exposure for broad-energy germanium type (BEGe) detectors is increased threefold with respect to our
previous data release. The BEGe detectors feature an excellent background suppression from the
analysis of the time profile of the detector signals. In the analysis window a background level of
1.0þ0.6

−0.4 × 10−3 counts=ðkeV kg yrÞ has been achieved; if normalized to the energy resolution this is the
lowest ever achieved in any 0νββ experiment. No signal is observed and a new 90% C.L. lower limit for the
half-life of 8.0 × 1025 yr is placed when combining with our previous data. The expected median
sensitivity assuming no signal is 5.8 × 1025 yr.
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Introduction.—Despite many decades of research several
properties of neutrinos are still unknown. Among them is
the fundamental question whether neutrinos are their own
antiparticles (i.e., Majorana particles), as predicted by
several extensions of the standard model of particle physics
[1–3]. In this case neutrinoless double-β (0νββ) decay
could be observed, a process in which lepton number is not
conserved.
Several experiments are taking data or are under prepa-

ration searching for this decay using a variety of suitable
isotopes (see Refs. [4,5] for overviews). The sum of the
kinetic energies of the two electrons emitted in the 0νββ
decay ðA; ZÞ → ðA; Z þ 2Þ þ 2e− is equal to the mass
difference Qββ of the two nuclei. A sharp peak in the
energy spectrum is the prime signature for all 0νββ
experiments.
Key parameters of these rare event searches are large

mass M and long measuring time t on the one hand, and
high energy resolution and low background on the other.
Apart from the various isotopes the experiments differ in
their setups and detection methods, thereby exploiting the
aforementioned parameters. The GERmanium Detector
Array (GERDA) experiment searches for 0νββ decay of
76Ge using germanium detectors made from material
enriched in 76Ge, i.e., source and detector are identical.
This Letter shows that superior energy resolution and
background suppression permit us to achieve very sensitive
results already at relative low exposure E ¼ Mt.
Experiment.—The GERDA experiment is located at the

Gran Sasso underground laboratory (LNGS) of INFN in
Italy. High-purity germanium detectors made from material
with enriched 76Ge fraction of ∼87% are operated in a
64 m3 liquid argon (LAr) bath. The argon cryostat is
located inside a tank filled with 590 m3 of high-purity
water. LAr and water shield against the external radio-
activity. The water tank is instrumented with photomulti-
pliers and operates as a Cherenkov detector to veto residual
muon-induced events. Material for structural support of the
detectors and for cabling is minimized in order to limit
the background from close-by radioactive sources. More
details of the experiment can be found in Refs. [6–8].
A first phase of data taking ended in 2013 with no

indication of a signal [9]. The background index achieved
at the 76Ge Qββ value of 2039 keV was 10−2 counts=
ðkeV kg yrÞ. For the second phase a new component has
been installed to detect argon scintillation light [8]. The
enriched germaniummass was doubled in the form of small
read-out electrode detectors (the Canberra BEGe detector
model [10]) supplementing the previously used coaxial
detectors. Both enhancements allow for a more efficient
rejection of background events, which can be characterized
by their energy deposition in the LAr, in several detectors
or in several locations (including the surface) of a single
detector. In contrast, 0νββ energy deposits are made by two
electrons, which typically release all their energy in a small

volume of a single detector. Localized and delocalized
energy deposits are distinguished by pulse shape discrimi-
nation (PSD) based on the time profile of the detector
signal. For BEGe detectors a simple variable A=E (the
maximum A of the detector current signal normalized by
the energy E) shows very good PSD performance which is
superior to the one based on neural networks for coaxial
detectors [11].
Phase II data taking started in December 2015 with a

target background index of 10−3 counts=ðkeV kg yrÞ, a
tenfold reduction of background with respect to Phase I.
Thirty BEGe detectors (20.0 kg total mass) and seven
coaxial detectors (15.6 kg) are deployed, whose energy
resolution at Qββ is typically better than 3 and 4 keV full
width at half maximum (FWHM), respectively.
As in Phase I, a �25 keV window around Qββ was

blinded: events with an energy in one detector within this
window were hidden until the entire data selection
was finalized. The first unblinding of Phase II took place
in June 2016 and no 0νββ signal was found. A lower limit
of T0ν

1=2 > 5.3 × 1025 yr (90% C.L.) was extracted with a
sensitivity, defined as the median expected lower limit
assuming no signal, of 4.0 × 1025 yr [7].
Results.—Here, the result from a second unblinded data

set from the BEGe detectors taken between June 2016 and
April 2017 is reported. The complete analysis of the new
data set, including the detector energy reconstruction,
LAr veto reconstruction, data selection, PSD, and statistical
treatment, is identical to the previous one published in
Refs. [7,9].
With the new exposure of 12.4 kg yr, the total Phase II

exposure doubles and the one for the lower background
BEGe detectors triples. Figure 1 shows the energy spectrum
of the latter; the blinded region around Qββ is indicated by
the grey vertical band. The spectrum below 500 keV is
dominated by 39Ar events, while the spectrum between 500
and 1800 keV is dominated by events from 2νββ decays of
76Ge and Compton continua mainly from the 40K and 42K
lines. α decays dominate the spectrum above 2620 keV.
They are almost exclusively due to 210Po decays at the pþ

electrode or the isolating groove between pþ and nþ

electrodes (degraded α particles). Since the 40K γ line is
from an electron capture, no energy is deposited in the LAr
and only PSD is effective for rejecting events (see inset).
The γ line of 42K, the progeny of the long-lived 42Ar,
originates from a β decay which deposits up to 2 MeV in
the argon. The LAr veto rejects more than 80% of these
events (see inset).
Near Qββ the spectrum is composed of degraded α and β

particles of 42K decays at the detector surface, and Compton
scattered γ rays from 214Bi and 208Tl decays. The back-
ground is evaluated in the range between 1930 and
2190 keV without the two intervals (2104� 5) and
(2119� 5) keV due to known γ rays and without the
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signal interval (Qββ � 5) keV. The analysis window for the
0νββ search is identical but includes the signal interval. The
low background index of BEGe detectors, previously based
on one single event, is now confirmed with a more than
threefold exposure to be BI ¼ 1.0þ0.6

−0.4 × 10−3 counts=
ðkeV kg yrÞ. If normalized according to the energy reso-
lution and total signal efficiency ϵ, i.e., BI × FWHM=ϵ,
this value corresponds to 4.9þ2.9

−1.9 counts=ðton yrÞ. Hence,
GERDA will remain “background-free,” i.e., the average
background in the energy interval 1 × FWHM at Qββ is
expected to be less than 1 for the entire design exposure of
100 kg yr. The efficiency ϵ (see Table I) accounts globally
for the abundance of 76Ge in the detectors, the active
volume fraction, the probability that the entire decay energy
Qββ is released in the active volume fraction of one Ge
detector and the efficiency of all selection and analysis cuts
[7]. The normalized GERDA background BI × FWHM=ϵ
is at least a factor of 5 lower than that in any other
competing non-76Ge experiment.
The Majorana Demonstrator experiment also searches

for 0νββ decay of 76Ge employing passive shielding made
of ultrapure copper. With the same normalization [12],

their background is 5.7þ4.3
−3.6 counts=ðton yrÞ. This result is

reported in Ref. [13]. Both experiments have consequently
extremely low background.
The total exposure analyzed here is calculated from

the total mass and amounts to 23.5 and 23.2 kg yr for
Phase I and Phase II, respectively. This corresponds to
(471.1� 8.5) mol yr of 76Ge in the active volume of the
detectors. Data from both phases are grouped in six data
sets depending on detector type and background level as
summarized in Table I.
The spectrum in the analysis window is displayed in

Fig. 2. Since there is no event close to Qββ we place a

TABLE I. Summary of the Phase I (PI) and Phase II (PII)
analysis data sets [exposure E, energy resolution atQββ (FWHM),
total efficiency ϵ, and background index BI].

E FWHM ϵ BI

Data set kg yr keV
[10−3 counts=
ðkeV kg yrÞ]

PI golden 17.9 4.3(1) 0.57(3) 11� 2
PI silver 1.3 4.3(1) 0.57(3) 30� 10
PI BEGe 2.4 2.7(2) 0.66(2) 5þ4

−3
PI extra 1.9 4.2(2) 0.58(4) 5þ4

−3
Total PI 23.5
PII coaxial 5.0 4.0(2) 0.53(5) 3.5þ2.1

−1.5

PII BEGe 18.2 2.93(6) 0.60(2) 1.0þ0.6
−0.4

Total PII 23.2
Total 46.7
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90% C.L. lower limit of T0ν
1=2 > 8.0 × 1025 yr on the decay

half-life derived from a frequentist (profile likelihood)
analysis with a median sensitivity of 5.8 × 1025 yr. The
chance to have a stronger limit is 30% as evaluated by an
ensemble of toy Monte Carlo realizations of the experiment
(for details of the statistical analysis see the Methods
section in Ref. [7]). A Bayesian analysis with a flat prior
in 1=T0ν

1=2 yields a lower limit of 5.1 × 1025 yr at 90%

credibility and a sensitivity of 4.5 × 1025 yr.
Discussion.—The lower half-life limit can be converted

to an upper limit on the effective Majorana neutrino mass
mββ assuming the light neutrino exchange as dominant
mechanism. Using the standard value of gA ¼ 1.27, phase
space factors of Ref. [14], and the set of nuclear matrix
elements [15–22] discussed in a recent review [23], the
range for the upper limit on mββ is 0.12–0.26 eV for 76Ge.
The mββ limits for several 0νββ experiments obtained from
profile likelihood analyses are listed in Table II. Despite the
small deployed isotope mass Mi the mββ sensitivity and
actual limit of 76Ge are currently merely a factor of ≈1.5
larger relative to the most sensitive one in the field—if the
worst case NMEs are considered.
GERDA continues to collect data and is projected to

reach a sensitivity on the half-life well beyond 1 × 1026 yr
with the design exposure of 100 kg yr. The excellent energy
resolution and extremely low background make GERDA
very well suited for a possible discovery, having a 50%
chance of a 3σ evidence for a half-life up to ∼8 × 1025 yr at
the design exposure.
Both GERDA and the Majorana Demonstrator work in a

background-free regime. Therefore, the combined sensi-
tivity on the 76Ge 0νββ decay will increase almost linearly
with the sum of the two exposures (see Fig. 2 of Ref. [8]).
Having two experiments of similar background obtained
by different methods paves the way for the future LEGEND
experiment [29].
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